
J. Korean Math. Soc. 47 (2010), No. 6, pp. 1283–1297
DOI 10.4134/JKMS.2010.47.6.1283

SOME LOGARITHMICALLY COMPLETELY MONOTONIC
FUNCTIONS RELATED TO THE GAMMA FUNCTION

Feng Qi and Bai-Ni Guo

Abstract. In this article, the logarithmically complete monotonicity of
some functions such as

1
[Γ(x+1)]1/x ,

[Γ(x+1)]1/x

xα ,
[Γ(x+1)]1/x

(x+1)α and
[Γ(x+α+1)]1/(x+α)

[Γ(x+1)]1/x

for α ∈ R on (−1,∞) or (0,∞) are obtained, some known results are
recovered, extended and generalized. Moreover, some basic properties of
the logarithmically completely monotonic functions are established.

1. Introduction

Recall [23, Chapter XIII] and [41, Chapter IV] that a function f is said to
be completely monotonic on an interval I if f has derivatives of all orders on
I and

(1) (−1)kf (k)(x) ≥ 0

for all k ≥ 0 on I.
For our own convenience, let C[I] denote the set of completely monotonic

functions on I.
The well-known Bernstein’s Theorem in [41, p. 160, Theorem 12a] states

that a function f on [0,∞) is completely monotonic if and only if there exists
a bounded and non-decreasing function α(t) such that

(2) f(x) =
∫ ∞

0

e−xt dα(t)

converges for x ∈ [0,∞). This tells us that f ∈ C[[0,∞)] if and only if it is a
Laplace transform of the measure α.

Recall also [5, 27, 28] that a positive function f is said to be logarithmically
completely monotonic on an interval I if f has derivatives of all orders on I
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and

(3) (−1)n[ln f(x)](n) ≥ 0

for all x ∈ I and n ∈ N.
For simplicity, let L[I] stand for the set of logarithmically completely mono-

tonic functions on I.
Among other things, it is proved in [6, 9, 27] that a logarithmically com-

pletely monotonic function is always completely monotonic, that is, L[I] ⊂ C[I],
but not conversely, since a convex function may not be logarithmically convex
(see [24, p. 7, Remark. 1.16]).

Recall [41] that a function f defined on (0,∞) is called a Stieltjes transform
if it can be of the form

(4) f(x) = a+
∫ ∞

0

1
s+ x

dµ(s),

where a is a nonnegative number and µ a nonnegative measure on [0,∞) sat-
isfying

(5)
∫ ∞

0

1
1 + s

dµ(s) <∞.

The set of Stieltjes transforms is denoted by S.
Motivated by the papers [28, 32], it is revealed in [6] that

(6) S \ {0} ⊂ L[(0,∞)] ⊂ C[(0,∞)].

In [6, Theorem 1.1] and [15] it is pointed out that logarithmically completely
monotonic functions on (0,∞) can be characterized as the infinitely divisible
completely monotonic functions studied by Horn in [16, Theorem 4.4].

The functions in L[I] are also characterized by − f ′

f ∈ C[I].
Recently it is found that a finer inclusion

(7) S ⊂ C∗[(0,∞)] ⊂ L[(0,∞)] ⊂ C[(0,∞)]

had been established in [7, Section 14.2, pp. 122–127] and [37], where C∗[(0,∞)]
denotes the set

(8)
{
f(x)

∣∣∣∣
[

1
f(x)

]′
∈ C[(0,∞)]

}
.

In [7, p. 122], it was proved that

(9) H \ {0} ⊂ P = C∗[(0,∞)]

and it was told that this is a theorem of F. Hirsch with due reference. This result
says that if f > 0 and f ∈ H, then 1

f is the Laplace transform of a potential
kernel, hence the Laplace transform of an infinitely divisible measure and f
is a Bernstein function, i.e., a positive function whose derivative is completely
monotonic. In [7, p. 127] it is proved that S ⊂ H.

From Bernstein’s Theorem mentioned above it also follows that completely
monotonic functions on (0,∞) are always strictly completely monotonic unless
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they are constant, see [12], [33, p. 82] and [37, p. 11]. Also it follows that a
logarithmically completely monotonic function on (0,∞) is strictly so unless
it is of the form c exp(−αx) for c > 0 and α ≥ 0, so there is no need to
discuss the sharpening with “strictly” in general. If its representing measure
of a function f as a Stieltjes transform is concentrated on [a,∞) with a > 0,
then f ∈ L[(−a,∞)].

The classical Euler gamma function is usually defined for x > 0 by

(10) Γ(x) =
∫ ∞

0

tx−1e−t d t.

The logarithmic derivative of the gamma function

(11) ψ(x) =
Γ′(x)
Γ(x)

is called the psi or digamma function and ψ(n)(x) for n ∈ N the polygamma
functions.

It is well-known that the gamma function is a very important classical special
function and has many applications, see [1, 9, 13, 20]. One of the reasons why
the gamma function is still interesting, although nearly three centuries have
elapsed after its first appearance, is that it has many applications to various
areas of mathematics ranging from probability theory to number theory and
function theory.

Completely monotonic functions and logarithmically completely monotonic
functions have applications in many branches. For example, they play a role
in complex analysis, number theory, potential theory, probability theory [9],
physics [20], numerical and asymptotic analysis, integral transforms [41], and
combinatorics. Some related references are listed in [2, 3, 4, 5, 6, 15, 23, 41]. In
recent years, inequalities and (logarithmically) completely monotonic functions
involving the gamma, psi, or polygamma functions are established by some
mathematicians (see [2, 3, 4, 11, 15, 17, 21, 31] and related references therein).

In this paper, using Leibniz’s Identity, the discrete and integral represen-
tations of polygamma functions and other analytic techniques, some functions
such as

1
[Γ(x+ 1)]1/x

,
[Γ(x+ 1)]1/x

xα
,

[Γ(x+ 1)]1/x

(x+ 1)α
and

[Γ(x+ α+ 1)]1/(x+α)

[Γ(x+ 1)]1/x

with x ∈ (−1,∞) or x ∈ (0,∞) for α ∈ R are showed to be logarithmically
completely monotonic. Moreover, some basic properties of the logarithmically
completely monotonic functions are established.

Our main results are as follows.

Theorem 1. On the interval (−1,∞), the reciprocal of the function [Γ(x +
1)]1/x is logarithmically completely monotonic, that is,

(12)
1

[Γ(x+ 1)]1/x
∈ L[(−1,∞)].
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Theorem 2. Let α ∈ R. Then

(13)
[Γ(x+ 1)]1/x

(x+ 1)α
∈ L[(−1,∞)]

if and only if α ≥ 1.
Let

(14) τ(s, t) =
1
s

[
t− (t+ s+ 1)

( t

t+ 1

)s+1
]

for (s, t) ∈ (0,∞)× (0,∞) and τ0 = τ(s0, t0) > 0 be the maximum of τ(s, t) on
the set N× (0,∞). Then for any given real number α satisfying α ≤ 1

1+τ0
< 1,

(15)
(x+ 1)α

[Γ(x+ 1)]1/x
∈ L[(−1,∞)].

Theorem 3. Let α ∈ R. Then

(16)
xα

[Γ(x+ 1)]1/x
∈ L[(0,∞)]

if and only if α ≤ 0. For α ≥ 1 such that xα is real on (−1, 0),

(17)
xα

[Γ(x+ 1)]1/x
∈ L[(−1, 0)].

Theorem 4. Let α ∈ R. Then

(18)
[Γ(x+ 1)]1/x

xα
∈ L[(0,∞)]

if and only if α ≥ 1. For α ≤ 0 such that xα is real on (−1, 0),

(19)
[Γ(x+ 1)]1/x

xα
∈ L[(−1, 0)].

Theorem 5. Logarithmically completely monotonic functions have the follow-
ing basic properties:

(1) Let f(x) ∈ L[I]. Then f(x)
f(x+α) ∈ L[J ] if and only if α > 0, where

J = I ∩ {x+ α ∈ I}. Consequently,

(20)
[Γ(x+ α+ 1)]1/(x+α)

[Γ(x+ 1)]1/x
∈ L[(−1,∞)]

if and only if α > 0.
(2) Let h′(x) ∈ C[I] and f(x) ∈ L[h(I)]. Then f ◦ h(x) = f

(
h(x)

) ∈ L[I].

In Section 2, we are about to give proofs of these theorems. In Section 3,
some remarks are given. In Section 4, some new results are deduced, and some
known results are recovered, as applications of the above theorems.
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2. Proofs of theorems

It is well-known (see [1, 13, 39, 40] and [20, p. 16]) that the polygamma
functions ψ(k)(x) can be expressed for x > 0 and k ∈ N as

(21) ψ(k)(x) = (−1)k+1k!
∞∑

i=0

1
(x+ i)k+1

or

(22) ψ(k)(x) = (−1)k+1

∫ ∞

0

tke−xt

1− e−t
d t.

The first proof of Theorem 1. Let

(23) g(x) =





ln Γ(x+ 1)
x

, x 6= 0

−γ, x = 0

for x ∈ (−1,∞), where γ = 0.57721566 · · · is the Euler-Mascheroni constant.
By direct calculation and using Leibniz’s Identity, we obtain for n ∈ N,

g(n)(x) =





1
xn+1

n∑

k=0

(−1)n−kn!xkψ(k−1)(x+ 1)
k!

, hn(x)
xn+1

, x 6= 0,

ψ(n)(1)
n+ 1

, x = 0,

(24)

h′n(x) = xnψ(n)(x+ 1)





> 0 on (0,∞) if n is odd,
≤ 0 on (−1, 0] if n is odd,
≤ 0 on (−1,∞) if n is even,

(25)

where

ψ(−1)(x+ 1) = lnΓ(x+ 1) and ψ(0)(x+ 1) = ψ(x+ 1).

Hence, if n is odd, the function hn(x) increases on (0,∞) and decreases on
(−1, 0), if n is even, it decreases on (−1,∞). Since hn(0) = 0, it is easy to
see that hn(x) ≥ 0 on (−1,∞) if n is odd and that hn(x) ≥ 0 on (−1, 0) and
hn(x) ≤ 0 on (0,∞) if n is even. Thus, in the interval (−1,∞), the function
g(n)(x) ≥ 0 if n is odd and g(n)(x) ≤ 0 if n is even. Since

lim
x→∞

ψ(k)(x+ 1)
xn−k

= 0

for −1 ≤ k ≤ n− 1, it follows that limx→∞ g(n)(x) = 0. Consequently,

(−1)n+1g(n)(x) > 0

on (−1,∞) for n ∈ N. This implies that

(−1)k{ln[Γ(x+ 1)]1/x}(k) < 0

on (−1,∞) for k ∈ N and the function 1
[Γ(x+1)]1/x is logarithmically completely

monotonic on (−1,∞). ¤
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The second proof of Theorem 1. It is not difficult to see that

g(x) =
lnΓ(x+ 1)− ln Γ(1)

x
=

1
x

∫ x

0

ψ(t+ 1) d t =
∫ 1

0

ψ(xs+ 1) ds(26)

and

g(n)(x) =
∫ 1

0

snψ(n)(xs+ 1) ds.(27)

Thus, the required result follows from using formula (21) or (22) in (27). ¤

Proof of Theorem 2. Let

(28) να(x) =





[Γ(x+ 1)]1/x

(x+ 1)α
, x 6= 0

e−γ , x = 0

for x ∈ (−1,∞). Then for n ∈ N, by using (21),

ln να(x) =
lnΓ(x+ 1)

x
− α ln(x+ 1),(29)

[ln να(x)](n) =
1

xn+1

[
hn(x) +

(−1)n(n− 1)!αxn+1

(x+ 1)n

]
, µα,n(x)

xn+1
,(30)

µ′α,n(x) = xnψ(n)(x+ 1) +
(−1)n(n− 1)!αxn(x+ n+ 1)

(x+ 1)n+1

= xn

[
ψ(n)(x+ 1) +

(−1)n(n− 1)!α
(x+ 1)n

+
(−1)nn!α
(x+ 1)n+1

]

= xn

{
(−1)n+1n!

∞∑

i=1

1
(x+ i)n+1

+ (−1)n(n− 1)!α
∞∑

i=1

[
1

(x+ i)n
− 1

(x+ i+ 1)n

]

+ (−1)nn!α
∞∑

i=1

[
1

(x+ i)n+1
− 1

(x+ i+ 1)n+1

]}
(31)

= (−1)n(n− 1)!xn
∞∑

i=1

[
α

(x+ i)n
− α

(x+ i+ 1)n

− nα

(x+ i+ 1)n+1
+

n(α− 1)
(x+ i)n+1

]

= (n− 1)!(−x)n
∞∑

i=1

[αy + n(α− 1)](y + 1)n+1 − α(y + n+ 1)yn+1

yn+1(y + 1)n+1
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= (n− 1)!(−x)n
∞∑

i=1

α[(y + n)(y + 1)n+1 − (y + n+ 1)yn+1]− n(y + 1)n+1

yn+1(y + 1)n+1

= n!(−x)n
∞∑

i=1

1
yn+1

{
α

[
1 +

1
n

〈
y − (y + n+ 1)

(
y

y + 1

)n+1〉]
− 1

}
,

where y = x+ i > 0.
In [10, p. 28], [18, p. 154] and [19], Bernoulli’s inequality states that if x ≥ −1

and x 6= 0 and if α > 1 or if α < 0, then

(1 + x)α > 1 + αx.

This means that

1 +
s+ 1
t

<

(
1 +

1
t

)s+1

which is equivalent to

t− (t+ s+ 1)
(

t

t+ 1

)s+1

> 0

for s > 0 and t > 0, then the function τ(s, t) defined by (14) is positive for
(s, t) ∈ (0,∞)× (0,∞).

Since τ(s, t) > 0, it is deduced that

[αy + n(α− 1)](y + 1)n+1 − α(y + n+ 1)yn+1 > 0

for y = x+ i > 0 and n ∈ N if α ≥ 1. This means that for α ≥ 1,

µ′α,n(x)





> 0 on (−1, 0) ∪ (0,∞) if n is even,
> 0 on (−1, 0) if n is odd,
< 0 on (0,∞) if n is odd,

hence, it is obtained that the function µα,n(x) is strictly increasing on (−1,∞)
if n is even and that the function µα,n(x) is strictly increasing on (−1, 0) and
strictly decreasing on (0,∞) if n is odd. Since µα,n(0) = 0, it follows that
µα,n(x) ≤ 0 on (−1,∞) if n is odd and that µα,n(x) ≤ 0 on (−1, 0) and
µα,n(x) > 0 on (0,∞) if n is even. From limx→∞[ln να(x)](n) = 0, it is con-
cluded that [ln να(x)](n) ≥ 0 on (−1,∞) if n is even and [ln να(x)](n) ≤ 0
on (−1,∞) if n is odd, which is equivalent to (−1)n[ln να(x)](n) > 0 on
x ∈ (−1,∞) for n ∈ N and α ≥ 1. Hence, if α ≥ 1, the function [Γ(x+1)]1/x

(x+1)α is
logarithmically completely monotonic on (−1,∞).

Conversely, if the function [Γ(x+1)]1/x

(x+1)α is logarithmically completely mono-
tonic on (−1,∞), then [ln να(x)]′ ≤ 0 which is equivalent to

α ≥ x+ 1
x2

[xψ(x+ 1)− ln Γ(x+ 1)]

=
(

1 +
1
x

)[
ψ(x+ 1)− ln Γ(x+ 1)

x

]
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→
(

1 +
1
x

){
ln(x+ 1)− 1

2(x+ 1)
− 1

12(x+ 1)2
+O

(
1

x+ 1

)

− 1
x

[(
x+

1
2

)
ln(x+ 1)− x− 1 +

ln(2π)
2

+
1

12(x+ 1)
+O

(
1

x+ 1

)]}

→ 1

as x→∞ by using the following formulas (see [1, 20, 39, 40])

(32) ln Γ(x) =
(
x− 1

2

)
lnx− x+

ln(2π)
2

+
1

12x
+O

(
1
x

)

and

(33) ψ(x) = lnx− 1
2x

− 1
12x2

+O

(
1
x2

)

as x→∞.
Since τ(s, t) > 0 for (s, t) ∈ (0,∞) × (0,∞), we have τ0 > 0. When α ≤

1
1+τ0

< 1, it follows from (31) that µ′α,n(x) ≤ 0 and µα,n(x) is decreasing in
(−1,∞) if n an even integer and that µ′α,n(x) ≤ 0 and µα,n(x) is decreasing on
(−1, 0) and µ′α,n(x) ≥ 0 and µα,n(x) is increasing on (0,∞) if n an odd integer.
Since µα,n(0) = 0 and limx→∞[ln να(x)](n) = 0, we have [ln να(x)](n) < 0 for n
being an even and [ln να(x)](n) > 0 for n being an odd on (−1,∞), this implies
that (−1)n+1[ln να(x)](n) > 0 on (−1,∞) for n ∈ N. Therefore να(x) is strictly
increasing and (−1)n−1{[ln να(x)]′}(n−1) > 0 on (−1,∞) for n ∈ N. Hence, if
α ≤ 1

1+τ0
, then the function (x+1)α

[Γ(x+1)]1/x is logarithmically completely monotonic
on (−1,∞). The proof of Theorem 2 is complete. ¤

Second proof of sufficiency for (13). By [8, p. 522, Theorem 5.1], it is easy to
obtain that

h(z) =
ln Γ(z + 1)

z
− α ln(z + 1) = c+

∫ ∞

1

(
1

t+ z
− t

1 + t2

)
[α−M(t)] d t

with

c = −γ +
∞∑

k=1

(
1
k
− arctan

1
k

)

and M(t) = k−1
t for t ∈ (k − 1, k] and k = 2, 3, . . . . For α ≥ 1 one has

α ≥M(t). Accordingly,

(34) h′(t) = −
∫ ∞

1

α−M(t)
(t+ z)2

d t < 0, z > −1,

that is, the function h is decreasing with −h′ ∈ C[(−1,∞)], which is the suffi-
cient part of (13). ¤

Proof of Theorem 3. If α ≤ 0, the logarithmically complete monotonicity of
the function xα

[Γ(x+1)]1/x on (0,∞) follows from the similar arguments as in the
proofs of Theorem 2.
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If xα

[Γ(x+1)]1/x on (0,∞) is logarithmically completely monotonic, then its
logarithmic derivative

α

x
+

lnΓ(1 + x)− xψ(1 + x)
x2

is negative on (0,∞). Since

(35) lim
x→0+

ln Γ(1 + x)− xψ(1 + x)
x2

= −π
2

12
by L’Hospital’s rule and

(36) lim
x→0+

α

x
=





∞, if α > 0,
0, if α = 0,
−∞, if α < 0,

then it must hold that α ≤ 0.
The rest proofs of Theorem 3 are similar to the proofs of Theorem 2, so we

omit them. ¤

Proof of Theorem 4. This follows from modified arguments of above theorems.
¤

Proof of Theorem 5. Let Fα(x) = f(x)
f(x+α) for α > 0. Since f(x) is logarith-

mically completely monotonic, by definition we have (−1)k[ln f(x)](k) ≥ 0 for
k ∈ N, which is equivalent to [ln f(x)](2i) ≥ 0 and [ln f(x)](2i−1) ≤ 0 for i ∈ N,
and [ln f(x)](2i) is decreasing and [ln f(x)](2i−1) is increasing. So

[lnFα(x)](2i) = [ln f(x)](2i) − [ln f(x+ α)](2i) ≥ 0

and [lnFα(x)](2i−1) ≤ 0 for α > 0 and i ∈ N.
The property (20) follows from Theorem 1 and the monotonicity of Fα(x).
In [14, No. 0.430.1] the formula for the n-th derivative of a composite function

is given by

(37)
dn

dxn

[
f
(
h(x)

)]
=

n∑

k=1

1
k!
f (k)

(
h(x)

)
Uk(x),

where

(38) Uk(x) =
k−1∑

i=0

(−1)i

(
k

i

)
[h(x)]i

dn

dxn
[h(x)]k−i.

From this it is deduced that − f ′(h(x))
f(h(x)) ∈ C[I] since − f ′(x)

f(x) is a completely
monotonic function, which is equivalent to f(x) being logarithmically com-
pletely monotonic, and h′(x) ∈ C[I]. Therefore, (−1)i

[ f ′(h(x))
f(h(x))

](i) ≤ 0 on the
interval I for nonnegative integer i.

Since h′(x) ∈ C[I], it is obtained that (−1)ih(i+1)(x) ≥ 0 on the interval I
for nonnegative integer i.
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Hence, for k ∈ N,

(−1)k
[
ln f

(
h(x)

)](k) = (−1)k

[
f ′

(
h(x)

)

f
(
h(x)

) h′(x)
](k−1)

= (−1)k
k−1∑

i=0

(
k − 1
i

)[
f ′

(
h(x)

)

f
(
h(x)

)
](i)

h(k−i)(x)

=
k−1∑

i=0

(
k − 1
i

){
(−1)i

[
f ′

(
h(x)

)

f
(
h(x)

)
](i)}[

(−1)k−ih(k−i)(x)
] ≥ 0.

The proof of Theorem 5 is complete. ¤

3. Remarks

After proving our theorems, we would like to give several remarks on them.

Remark 1. As said in [6] and done in various papers, the complete monotonic-
ity for special functions has been established by proving the stronger statement
that the function is logarithmically completely monotonic or is a Stieltjes trans-
form. In some concrete cases it is often easier to establish that a function is
logarithmically completely monotonic or is a Stieltjes transform than to verify
directly the complete monotonicity. One of the important values of this paper
might be owning to the standard or elementary proofs of some theorems in this
paper.

Remark 2. It is remarked that many complete monotonicity results in [2, 3,
4, 11, 21] and closely-related references therein can be restated indeed as the
logarithmically complete monotonicity.

Remark 3. In [17, 22], the following monotonicity results were obtained:

[Γ(1 + k)]1/k
< [Γ(2 + k)]1/(k+1)

, k ∈ N;
[
Γ

(
1 +

1
x

)]x

decreases with x > 0.

These are extended and generalized in [25, 34]: The function [Γ(r)]1/(r−1) is
increasing in r > 0. Clearly, Theorem 1 generalizes these results and extends
them for the range of the argument.

The property (20) implies that the sequences

(39)
k
√
k!

m+k
√

(m+ k)!
and

[
k
√
k!

][
k+m+n

√
(k +m+ n)!

]
[

k+m
√

(k +m)!
][

k+n
√

(k + n)!
]

are increasing with k ∈ N for given natural numbers m and n.

Remark 4. It is proved in [27] that

ln Γ(x+ 1)
x

− lnx+ 1 = ln
[Γ(x+ 1)]1/x

x
+ 1 ∈ C[(0,∞)].
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A similar result was found in [38]: The function

1 +
lnΓ(x+ 1)

x
− ln(x+ 1) = ln

[Γ(x+ 1)]1/x

x+ 1
+ 1 ∈ C[(−1,∞)].

These are special cases of Theorems 2 and 4.

Remark 5. The property (20) generalizes and extends those in [29].

Remark 6. It has been proved in the proof of Theorem 2 that τ(s, t) > 0 for
(s, t) ∈ (0,∞)× (0,∞). Now we give an upper bound of the function τ(s, t) on
(0,∞)× (0,∞).

Let s = µt for µ ∈ (0,∞). Then we have

(40) τ(µt, t) =
1
µ

[
1− (µ+ 1)t+ 1

1 + t

( t

1 + t

)µt
]
.

Since the function (µ+1)t+1
1+t is strictly increasing with t ∈ (0,∞) for fixed µ ∈

(0,∞), it follows that

(41) 1 <
(µ+ 1)t+ 1

1 + t
< µ+ 1.

Since the function
(
1 + 1

t

)t is strictly increasing, we see that

(42)
( t

1 + t

)µt

=
[

1
(1 + 1/t)t

]µ

is strictly decreasing with t ∈ (0,∞) for fixed µ ∈ (0,∞), therefore

(43)
1
eµ

<
( t

1 + t

)µt

< 1.

Combining (40), (41) and (43) produces

(44) τ(µt, t) <
1
µ

(
1− 1

eµ

)
< lim

µ→0

[
1
µ

(
1− 1

eµ

)]
= 1.

Since µ ∈ (0,∞) and t ∈ (0,∞) are arbitrary, so we have

(45) τ(s, t) < 1

for (s, t) ∈ (0,∞)× (0,∞).
Recently, the inequality (45) was improved in [26, 35].

4. Applications

In what follows, as applications of our main results, we would like to deduce
some consequences of our theorems stated in Section 1.

The first application of our theorems is the following proposition.
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Proposition 1. For α ≥ 1 and β > 0, the function

(46)
[Γ(x+ 1)]1/x

[Γ(x+ 1 + β)]1/(x+β)

(
1 +

β

x+ 1

)α

∈ L[(−1,∞)].

For β > 0 and any given real number α satisfying α ≤ 1
1+τ0

< 1, the reciprocal
of the function defined in (46) belongs to L[(−1,∞)].

For α ≥ 1 and β > 0, the function

(47)
[Γ(x+ 1)]1/x

[Γ(x+ 1 + β)]1/(x+β)

(
1 +

β

x

)α

∈ L[(0,∞)].

For α ≤ 0 and β > 0, the reciprocal of the function defined in (47) belongs to
L[(0,∞)].

Proof. These follow from combining Theorem 5 with Theorem 1 to Theorem 4.
¤

Remark 7. The results in Proposition 1 generalize and extend those of [29].

Define

(48) Qa,b(x) =
[Γ(x+ a+ 1)]1/(x+a)

[Γ(x+ b+ 1)]1/(x+b)

for nonnegative real numbers a and b. J. Sándor [36] established that Q1,0 is
decreasing on (1,∞). In [4] Alzer and Berg proved that [Qa,b(x)]c is completely
monotonic with x ∈ (0,∞) if and only if a ≥ b for c > 0. The following
proposition extends the ranges of variables a, b and x in [4] and can be regarded
as a generalization of Proposition 1 above.

Proposition 2. Let a, b ∈ R and c > 0. Then [Qa,b(x)]c ∈ L[(−(1 + b),∞)] if
and only if a > b.

Proof. From Theorem 1, it is clear that

1
[Γ(x+ a+ 1)]1/(x+a)

∈ L[(−(1 + a),∞)]

for a ∈ R. From Theorem 5 it follows that the function Qa,b(x) is logarithmi-
cally completely monotonic on (−(1 + a),∞) ∩ (−(1 + b),∞) = (−(1 + b),∞)
for a > b. So does the function [Qa,b(x)]c for c > 0.

If [Qa,b(x)]c is logarithmically completely monotonic for c > 0, then the
derivative {[lnQa,b(x)]c}′ = c[g′(x+ a)− g′(x+ b)] < 0, where g(x) is defined
by (23) and g′(x) is strictly decreasing on (−1,∞), since g′′(x) =

∫ 1

0
t2ψ′′(xt+

1) d t < 0 from (27) and (21). Therefore, there must be a > b. ¤

As consequences of the third conclusion in Theorem 5, we have:
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Proposition 3. Let f be a logarithmically completely monotonic function and
g a completely monotonic function. Then the function

f

(
a+ b

∫ x

α

g(t) d t
)

is logarithmically completely monotonic on an interval I if it is defined on I,
where b is positive and α ∈ I.

In particular, if f is logarithmically completely monotonic, then the following
functions are also logarithmically completely monotonic:

f(axα + b), where a is nonnegative numbers and 0 ≤ α ≤ 1,(49)

f
(
a+ b ln(1 + x)

)
, where b is nonnegative,(50)

f(1− e−x),(51)

f
(
arctan

√
x

)
.(52)

If f(x) is completely monotonic on an interval I, then the function [A −
f(x)]−µ is logarithmically completely monotonic on I, where A > f(x) for
x ∈ I and µ ≥ 0.

Proof. These are direct consequences of Theorem 5. ¤
Remark 8. The following functions are also logarithmically completely mono-
tonic:

exp(−axα), where a ≥ 0 and 0 ≤ α ≤ 1,(53)

[a+ b ln(1 + x)]−µ, where a ≥ 0, b ≥ 0 and µ > 0,(54)

(a− be−x)−µ, where a ≥ b > 0 and µ ≥ 0.(55)

Remark 9. Finally, we pose an open problem: Let τ0 = τ(s0, t0) be the maxi-
mum value of τ(s, t) defined by (14) on the set N× (0,∞). Then

(56)
(x+ 1)α

[Γ(x+ 1)]1/x
∈ L[(−1,∞)]

if and only if α ≤ 1
1+τ0

< 1.

Remark 10. This paper is a slightly revised version of the preprints [28, 30].
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