• Title/Summary/Keyword: competitive electricity market

Search Result 196, Processing Time 0.029 seconds

A Study on the Allocation Method of Power System Reliability Level under the Deregulated Electricity Market (규제완화된 전력시장 하에서의 전력계통 신뢰도 할당 방법에 관한 연구)

  • Kim, Hong-Sik;Lim, Chae-Hyeun;Choi, Jae-Seok;Lee, Sun-Young;Cha, Jun-Min
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.394-396
    • /
    • 2000
  • This paper presents a new algorithm for the allocation of the reliability level of composite power system under deregulated electricity market. Under deregulated electricity market, it is required to establish a methodology that can evaluate supply cost and supply reliability of each demand to realize the available priority service reflected a preference of each customer. In this study, a concept of reliability differentiated electricity service as priority service to keep reliability of particular customer within a desirable level is proposed on HLII under deregulated competitive electricity market. The uncertainties of not only generators but also transmission lines are considered for the reliability evaluation in this study. The characteristics and effectiveness of this methodology are illustrated by the case studies on MRBTS and IEEE-RTS.

  • PDF

Profit-based Thermal Unit Maintenance Scheduling under Price Volatility by Reactive Tabu Search

  • Sugimoto Junjiro;Yokoyama Ryuichi
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.331-338
    • /
    • 2005
  • In this paper, an improved maintenance scheduling approach suitable for the competitive environment is proposed by taking account of profits and costs of generation companies and the formulated combinatorial optimization problem is solved by using Reactive Tabu search (RTS). In competitive power markets, electricity prices are determined by the balance between demand and supply through electric power exchanges or by bilateral contracts. Therefore, in decision makings, it is essential for system operation planners and market participants to take the volatility of electricity price into consideration. In the proposed maintenance scheduling approach, firstly, electricity prices over the targeted period are forecasted based on Artificial Neural Network (ANN) and also a newly proposed aggregated bidding curve. Secondary, the maintenance scheduling is formulated as a combinatorial optimization problem with a novel objective function by which the most profitable maintenance schedule would be attained. As an objective function, Opportunity Loss by Maintenance (OLM) is adopted to maximize the profit of generation companies (GENCOS). Thirdly, the combinatorial optimization maintenance scheduling problem is solved by using Reactive Tabu Search in the light of the objective functions and forecasted electricity prices. Finally, the proposed maintenance scheduling is applied to a practical test power system to verify the advantages and practicability of the proposed method.

Econometric Study on Forecasting Demand Response in Smart Grid (스마트그리드 수요반응 추정을 위한 계량경제학적 방법에 관한 연구)

  • Kang, Dong Joo;Park, Sunju
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.133-142
    • /
    • 2012
  • Cournot model is one of representative models among many game theoretic approaches available for analyzing competitive market models. Recent years have witnessed various kinds of attempts to model competitive electricity markets using the Cournot model. Cournot model is appropriate for oligopoly market which is one characteristic of electric power industry requiring huge amount of capital investment. When we use Cournot model for the application to electricity market, it is prerequisite to assume the downward sloping demand curve in the right direction. Generators in oligopoly market could try to maximize their profit by exercising the market power like physical or economic withholding. However advanced electricity markets also have demand side bidding which makes it possible for the demand to respond to the high market price by reducing their consumption. Considering this kind of demand reaction, Generators couldn't abuse their market power. Instead, they try to find out an equilibrium point which is optimal for both sides, generators and demand. This paper suggest a quantitative analysis between market variables based on econometrics for estimating demand responses in smart grid environment.

A study on the revenue improvement of Intermediate/Peak Load Generating Unit in CBP Electricity Market (CBP 시장에서 중간/첨두부하용 발전설비의 수익분석과 개선방안)

  • Kim, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.422-425
    • /
    • 2003
  • CBP market which is the first stage of competitive electricity market has been operated and the KPX has been established since April, 2001 by restructuring plan for electricity industry. Baseload unit are settled with baseload CP and BLMP in CBP market. The other unit are settled with peakload CP and SMP. The difference of settlement between two groups occurs the profit changes of the unit. This paper analyzes the profit by units under settlement rule in CBP market. It analyzes the difference between market clearing price and variable costs, and fixed cost recovery through CP income. Finally, this paper suggests the plan how market was affected by the difference of fixed cost recovery by generators and how to improve Intermediate and peak load unit's profit.

  • PDF

A study on long-term capacity procurement mechanism in electricity markets (전력시장에서 장기적 용량확보 메커니즘에 관한 연구)

  • Lee, Seung-Hyun;Chung, Koo-Hyung;Han, Seok-Man;Kim, Bal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.398-399
    • /
    • 2006
  • The procurement of generation and transmission/Distribution capacity in vertically-integrated electric industry is sufficient by facility construction in suitable time. However, the introduction of competitive electricity market increase the efficiency of availability for facilities and fuels. As a result, long-term capacity procurement is required for stable demand-supply balance since it is expected to maintain their generation capacity at a minimum for profit maximization. In this paper, a new long-term capacity procurement mechanism is proposed, which is able to assure supplemental contribution in competitive electricity market.

  • PDF

Analysis of the Competitive Effects of Financial Transmission Rights on Electricity Markets (재무적 송전권의 전력시장에의 영향 분석)

  • 김진호;박종배;신중린
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.6
    • /
    • pp.350-357
    • /
    • 2004
  • In a deregulated electricity generation market, the sufficient capacity of transmission lines will promote the competition among generation companies (Gencos). In this paper, we show that Gencos' possession of rights to collect congestion rents may increase the competition effects of the transmission lines. In order for concrete analysis on this effect, a simple symmetric market model is introduced. In this framework, introducing the transmission right to the Gencos has the same strategic effects as increasing the line capacity of the transmission line. Moreover, the amount of effectively increased line capacity is equal to the amount of the line rights. We also show that the asymmetric share of the financial transmission rights may result in an asymmetric equilibrium even for symmetric firms and markets. We also demonstrate these aspects in equal line rights model and single firm line rights model. Finally, a numerical example is provided to show the basic idea of the proposed paper.

Leader-Follower Model Analysis on Mixed Strategy Nash Equilibrium of Electricity Market with Transmission Congestion (송전선 혼잡시의 복합전략 내쉬균형에 대한 선도-추종자 모형 해석)

  • Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.187-193
    • /
    • 2012
  • Nash Equilibrium (NE) is as useful tool for investigating a participant's strategic generation quantity in a competitive electricity market. Cournot model may give a mixed strategy NE instead of a pure strategy when transmission constraints are considered. A mixed strategy is difficult to compute, complicated to understand conceptually, and hard to implement in an electricity market practically. This paper presents that a mixed strategy does not appear in Stackelberg leader-follower model even under a transmission congestion. A solution method is proposed for the leader-follower model under a nondifferentiable space of a strategy variable. Based on the pure strategy NE with a transmission line congested, the merit of leader-follower model is shown from a social welfare point of view.

Bidding Strategy Determination by Defining Strategic Vector

  • Kang, Dong-Joo;Kim, Balho H.;Chung, Koo-Hyung;Moon, Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.47-52
    • /
    • 2003
  • This paper presents a schematic process based on the method of eliminating dominated strategies to obtain the optimal bidding strategy Pursuing the Nash equilibrium Point. The Proposed approach is demonstrated for a bidding game in a generation competitive market with 2-dimensional bidding strategy vectors constituting a price-quantity strategy curve.

An Improved Generation Maintenance Strategy Analysis in Competitive Electricity Markets Using Non-Cooperative Dynamic Game Theory (비협조 동적게임이론을 이용한 경쟁적 전력시장의 발전기 보수계획 전략 분석)

  • 김진호;박종배;김발호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.9
    • /
    • pp.542-549
    • /
    • 2003
  • In this paper, a novel approach to generator maintenance scheduling strategy in competitive electricity markets based on non-cooperative dynamic game theory is presented. The main contribution of this study can be considered to develop a game-theoretic framework for analyzing strategic behaviors of generating companies (Gencos) from the standpoints of the generator maintenance-scheduling problem (GMP) game. To obtain the equilibrium solution for the GMP game, the GMP problem is formulated as a dynamic non-cooperative game with complete information. In the proposed game, the players correspond to the profit-maximizing individual Gencos, and the payoff of each player is defined as the profits from the energy market. The optimal maintenance schedule is defined by subgame perfect equilibrium of the game. Numerical results for two-Genco system by both proposed method and conventional one are used to demonstrate that 1) the proposed framework can be successfully applied in analyzing the strategic behaviors of each Genco in changed markets and 2) both methods show considerably different results in terms of market stability or system reliability. The result indicates that generator maintenance scheduling strategy is one of the crucial strategic decision-makings whereby Gencos can maximize their profits in a competitive market environment.

Designing the Optimal Bilateral Contract in the Competitive Electricity Market (경쟁적 전력시장에서의 적정 직거래 계약가격 설정에 관한 연구)

  • Chung Koo Hyung;Kang Dong Joo;Kim Bal Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.701-703
    • /
    • 2004
  • Although the electricity market structure worldwide may be different in kinds, there generally exists long-term forward market and short-term spot market. Particularly, the bilateral contract in long-term forward market fixes the price between a genco and a customer so that the customer can avoid risks due to price-spike in spot market. The genco also can make an efficient risk-hedge strategy through this bilateral contract. In this paper, we propose a new mechanism for evaluating the optimal bilateral contract price using game theory. This mechanism makes a customer reveal his/her own willingness to purchase electricity so that a fair bilateral contract price can be derived.

  • PDF