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Profit-based Thermal Unit Maintenance Scheduling
under Price Volatility by Reactive Tabu Search

Junjiro Sugimeto* and Ryuichi YokoyamaJr

Abstract — In this paper, an improved maintenance scheduling approach suitable for the competitive
environment is proposed by taking account of profits and costs of generation companies and the
formulated combinatorial optimization problem is solved by using Reactive Tabu search (RTS). In
competitive power markets, electricity prices are determined by the balance between demand and
supply through electric power exchanges or by bilateral contracts. Therefore, in decision makings, it is
essential for system operation planners and market participants to take the volatility of electricity price
into consideration. In the proposed maintenance scheduling approach, firstly, electricity prices over the
targeted period are forecasted based on Artificial Neural Network (ANN) and also a newly proposed
aggregated bidding curve. Secondary, the maintenance scheduling is formulated as a combinatorial
optimization problem with a novel objective function by which the most profitable maintenance
schedule would be attained. As an objective function, Opportunity Loss by Maintenance (OLM) is
adopted to maximize the profit of generation companies (GENCOS). Thirdly, the combinatorial
optimization maintenance scheduling problem is solved by using Reactive Tabu Search in the light of
the objective functions and forecasted electricity prices. Finally, the proposed maintenance scheduling

is applied to a practical test power system to verify the advantages and practicability of the proposed
method.

Keywords: Maintenance Scheduling, Tabu Search, Eleciricity Market, Electricity Price Forecasting,

Artificial Neural Network.

1. Introduction

The electric industry throughout the world, which has
long been dominated by vertically integrated utilities, is
undergoing enormous changes. The electric industry is
evolving into a distributed and competitive structure where
market forces drive the price of electricity and is trying to
reduce system operation and maintenance costs under
increased competitions.

The electric power wholesale market has being open
since 2005 in Japan. Therefore electric power prices are
determined by the balance between demand and supply in
the market. In the competitive environment, customers
request for satisfiable service reliability and lower elec-
tricity prices, while generation companies (GENCOS) have
to make their own profits. Thus, it is important for
generation companies to work out efficient operation plans
and maintenance schedules and to maximize their own
profit with desirable supply reliability.

The preventive maintenance of thermal generating units
is a conventional problem of resource planning in power
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systems and is formulated as a large scale combinatorial
optimization problem. Several methods have been pro-
posed in the literature to solve the maintenance scheduling
of generating units. For example, Integer programming
(branch and bound) [7], Decomposition method [9],
Dynamic programming, Heuristic algorithms and Meta-
heuristics algorithms[2] have been applied to the main-
tenance scheduling

These approaches adopt objectives for equalizing or
leveling reserves throughout the planning interval[l],
minimizing expected total production costs[1, 2, 9}, mini-
mizing variance of un-served energy[8] and leveling the
risk of failure to meet demand[10].

However, those studies have not given thought to the
price volatility and the profit that is lost by maintenance of
generation units in the recent competitive environment.
Volatility of electricity prices can increase the uncertainties
of profits. Therefore, it is necessary for maintenance
scheduling of today to take account of the price volatility
as well as the cost of opportunity loss by maintenance.

From these reasons, this paper proposed an improved
maintenance scheduling approach by taking account of
profits and costs of generation companies in competitive
markets where electric power is traded through power
exchanges (PX) and electricity prices change day after day.
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For solutions, the proposed combinatorial optimization
problem is solved by Reactive Tabu Search (RTS).
Additionally, in this maintenance scheduling, the profit of
generation companies is maximized keeping desirable
supply reliability. This can be achieved by minimizing
Opportunity Loss by Maintenance (OLM), which is the
expected economic loss when the thermal unit is off line by
maintenance and does not sell electricity to the market.

In this proposed maintenance scheduling approach,
firstly, the electricity prices at each maintenance period are
forecasted using the Neuro-autoregressive model. Secondly,
the optimal maintenance scheduling problem is solved by
using Reactive Tabu Search based on the forecasted
electricity prices. On a test power system, we verify that
generation companies are able to maximize their profit by
minimizing the proposed objective functions (Opportunity
Loss by Maintenance etc.),

2. Profit-based Maintenance Scheduling
in Competitive Environment

2.1 Formulation of Maintenance Problem

The aim of the maintenance scheduling is to determine
the period in which generating units of an electric
generation company should be taken off line for the
planned preventive maintenance over the course of three-
year planning horizon. In order to make a profit, we
propose that the generation company minimizes an
objective which is composed of the total Opportunity Loss
by Maintenance (OLM) and the Fuel cost (FCOST). The
OLM is an economic loss by the maintenance of the
generation unit. The Fuel cost is also an indispensable
objective, which has been incorporated in several
approaches for maintenance scheduling [1, 2, 9]. Moreover,
the maintenance cost itself has to be minimized and a
constraint on variance of the spinning reserve rate and a
number of other constraints should be satisfied.

Objective function
Minimize

N T
C=ZlMcj+m;fo<B,)

(D
T L T
+w22{[Mk][MCPk]—ZfM (P)[+w; > Rd,
k=1 j=1 k=1
Constraints
Demand-Supply balance in the system
M k <P MAX D k Q)

Lower limit of reserve rate

Rk 2 RLow (3)

Consecutive periods of maintenance

2x 5y =1
k
and
if (i =1),ther(x g = Xjppp = = Xkt -1 =1) )
Maintenance crew constraints
2 xy <1
jedv (5)
where,
MC;: Maintenance cost for unit j.
N: The number of thermal units.
M;: Total generation capacity under maintenance at
period k.
MCP,: Market clearing price at period k.
fu : Fuel cost function for unit j in maintenance.
wp:  Weighting coefficient.
Rd,: Reserve rate deviation at period k.
R;,,,: Lower limit of reserve rate.
R;:  Reserve rate at period k.
Ja : Setof crew constraint pairs.
foit Fuel cost coefficient of unit i in operation.
P;: Capacity of unit j.
Xj :  State variable of unit; if unit j is in maintenance

at period k then  xu=1; otherwise x;=0.
j: Number of thermal unit.
k: Starting period of unit j.
L: The Number of thermal units in maintenance at

period k.
T: Scheduling term.
t, : Required maintenance period for unit j.

2.2 Operation sub-problem

The operation cost is determined by the economic
dispatching to minimize the total fuel cost of online
generators keeping the balance of supply and demand [16,
17].

The dispatching problem can be expressed as follows.

The objective is to minimize the total fuel cost of
thermal plants:

FC=Min3(a; +b,P, +c,P}) (6
j=1
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subject to inequality constraints on generation outputs

Py SP, <P,

min — max (7)

where, a;, b, c; represent unit cost coefficients of the j-th
generator and n is the number of generators connecting to
the system in operation.
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Fig. 1 Social surplus in competitive power markets

3. Market Model and Electricity Price Forecasting
3.1 Market Model

The wholesale electricity market that is called Japan
Electric Power Exchange (JEPX) has started in April 2005.
JEPX adopts a kind of a uniform price auction and uses the
continuous auction scheme in spot markets.

In JEPX, the market clearing price (MCP) is determined
according to the principle of the price priority. This
principle for MCP settlements is to combine the seller who
bids low price and the buyer who bids high price.

k)

wk-1)

Fig. 2 Three-layered feed-forward artificial neural network

Then the market clearing price at a cross point where
supply and demand are balanced is accepted as a contract
price of the entire market [15]. In this market auction
scheme, the social surplus which is a sum total of con-

sumer’s surplus and producer's surplus are maximized to
induce an efficient resource allocation. Fig. 1 shows the
concept of social surplus [12]. All the buyers will pay the
uniform market clearing price which is showed in Fig. 1.

3.2 Demand Forecast Method

In the competitive environment, generation companies
must form the strategy to win the competition. Working
out efficient maintenance schedules of generation units is a
critical task for making their own profit. Since electricity
price volatility can increase uncertainties of the profit, it is
important for the maintenance scheduling to forecast the
electricity prices in advance over the scheduling periods.
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Fig. 3 Marginal prices and an interpolated Bidding curve

Electricity price volatility is principally related with
changes of demand in the electricity market. Then, the
power demand has to be predicted beforehand for fore-
casting the electricity prices in maintenance scheduling
periods. In this paper, the power demand is predicted by a
three-layered feed-forward artificial neural network in Fig.
2, The prediction model is constructed and trained by
feeding the time series data of the demand and the weather
condition and can predict future power demands over
several years. Detailed formulations are shown in
Appendix.

3.3 Price Forecast Method

In the proposed electricity price forecasting, bidding
prices of sellers (power suppliers) are assumed to be
determined by marginal prices of their own thermal
generation units which are defined as equation (8).

Fig. 3 shows the relation of generation capacities and
marginal prices of actual generation units in Japan which
are arranged in orders from lower prices to higher prices
and also an interpolated bidding curve, which is to use for
forecasting electricity prices in the future. This interpolated
bidding curve is approximated by the fourth-order function
as in equation (9).
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By using this bidding curve, future electricity prices can
be forecasted according to the total demand of the market
in the simplest way. In the application of the method to
practical power systems, it is obvious that use of more
sophisticated and refined price forecasting approach is
needed.

d

MC(P]-)=E(FCJ-)=bj+ZCij (8)
J

BC =dP* +eP’ + fP* + gP+h ©)

where d ,e, f, g h represent coefficients of the bidding
curve function.

4. Optimization Process by Tabu Search

In Tabu Search (TS) optimization algorithm, a number
of state transitions in the search space are carried out
aiming at finding out the optimal solutions or a range of
near optimal solutions. The terminology of Tabu is related
to the characteristic that in the optimization process the
method avoids revisiting certain areas of the search space
that have already been searched [5, 8, 9].

4.1 Advantage of Reactive Tabu Search

It is known that the Tabu search has a shortcoming of
being entrapped into a local solution depending on the
initial value and Tabu length. In the Reactive Tabu Search
(RTS), functions of Reaction and Escape have been
incorporated which can expand the search space more and
enable us to avoid the loop of search is described in the
following [13] and Fig. 4.

A Cycling  Change of tabu length

Evaluation

5 10 position
Fig. 4 Expanded functions of reaction in RTS

4.1.1 Reaction Mechanism

As the Tabu length gives influence considerably to the
search efficiency in the TS, it is necessary to choose the
Tabu length properly in accordance with target problems.
However RTS has the function which controls Tabu length
automatically as follows;’ '

- Store all solutions which have been visited.

- Extend Tabu length when Current solution has already
been searched.

- Shorten Tabu length if solution which has already been
searched does not appear for a long term.

4.1.2 Escape Mechanism
In case that the new obtained solution has already been

searched, the random search is carried out repetitively and
the efficiency of the searches is improved by changing the
search space completely.

4.1.3 Reactive Tabu Search
The procedure of RTS can be expressed as follows;

Step.1 Generation of the initial condition

- Generate the initial state and set it as the current state.

- Store the current state into the Tabu list.

Step.2 Generation and evaluation of neighboring states

- Generate all possible neighboring states.

-Check whether the neighboring states are in the Tabu
list or not.

Step.3 Selection of the next state

-Move the current state which gives the best objective
function value and is not in the Tabu list in neighbor-
hood to the next state.

- Put the current state into the Tabu list.

Step.4 Reaction (Correction of search length)

- Extend Tabu length when Current solution has already
been searched.

- Shorten Tabu length if solution which has already been
searched doesn’t appear for a long term.

Step.5 Escape

- Carried out the Random search if too many configure-
tions are repeated too often.

Step.6 Judgment of search termination

- The search is terminated and goes to step2 to search for
other solutions, when the number of iterations reaches
the prescribed maximum.

4.2 Procedure of Proposed Method

The proposed method is composed of two stages, that is
one is for price forecasting and the other is for maintenance
scheduling. In the first stage, electricity prices are fore-
casted using a three layered feed-forward artificial neural
network. In the second stage, the maintenance schedule is
determined to minimize the objective function given by the
equation (1) using RTS. The process of searching neighbor
solution for maintenance scheduling in RTS is shown by
Fig. 5.

This proposed maintenance scheduling method is formu-
lated as the 0-1 integer-programming problem. Due to this
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formulation, it becomes easy to check the feasibility and 5. Applications to a Test Power System
reliability of obtained solutions. Fig. 6 shows the flow

chart of this proposed method. The performance of the proposed approach was examined

by applying to a test system, which has 26 units in 152
Current solution maintenance periods of time (three years) and obtained
solutions are compared with those of optimizations under
other objective functions, such as minimization of the total
reserve rate deviation (TRD), the Opportunity Loss by
Maintenance (OLM), and the fuel cost (FCOST) and also
minimization of both the fuel cost and Opportunity Loss by

Generation 1:0000001111100000000000
Generation 2 : 0011111110000000000000
Generation 3 : 0000000000000111100000

ﬂ Maintenance (FCOST&OLM).
The parameters for each unit of the test system are
/ Neighbor solution \ shown in Table 1. Fig. 7 shows the profile of power demands
Generation 1:0000001111100000000000 and forecasted electricity prices for targeted maintenance
Generation 2:0011111110000000000000 periods (for three years). It is assumed that the load is
Generation 3 :0000000000000111100000 increasing by 1% every year and the number of generation

units does not change within the maintenance periods

Table 1 Characteristics of each generation unit
Generation 1:0000001111100000000000 i 8 aF o

Generation 2:0011111110000000000000

Generation 3 : 0000000000000111100000 Z . i : i it
\ : i 1000 4] 14 350 8
: 2 1000 28] 15 350 6
Fig. 5 Searches of neighbors in RTS-based maintenance i ;gg :g 13 ggg 1;
scheduling 5 500 12] 18 350 8
6 500 10| 19 156 8
7 500 14] 20 156 14
8 500 8] 21 156 12
9 500 14| 22 156 12
Forecasting 10 600 12] 23 156 6
11 350 12| 24 156 12
Data normalizati 12 350 8l 25 125 8
L 2 ation | 13 350 12| 26 125 6
r Training by ANN ] _
10.0 10000

Forecasting power demand by the prediction model l
L

95 9000

1000

: D nd
«— 6.0 , —==—Dema o

No oo 1 31 61 91 121 151

— 2 8000
| N A a e
ecide electricity price basled on demand prediction ] i 7000
I s 60
Scheduling l * § 00 '%
Py 5000
[ Generate initial schedule | S é
k- 4000 §
— = [a]
L
L Make the neighborhood solutions —I S 90 S 3000
E , - 2000
g 6.5 Electricity price

Terms[week]

Reliable? Fig. 7 Changes of demand and forecasted electricity primcés

No l Yes
| Evaluation of the objective function | Fig. 8 shows the maintenance scheduling reserve rate
} obtained under each objective function. Table 2 illustrates
W the maximum, minimum and average reserve rates of each
case.
Yes . .. .
Table 2 shows the comparison of optimized solutions

under TRD, FCOST, OLM and both FCOST and OLM.

Fig. 6 Flow chart of the proposed method The average reserve rates and maximum reserve rates
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obtained under different objective functions are almost
equal. On the other hand, it shows that the minimum
reserve rates obtained under OLM and OLM&FCOST are
9% and 10% respectively which are smaller than those
obtained under other objective functions. The reason why
the minimum reserve rates obtained under OLM and
OLM&FCOST are smaller than others is that by
introducing OLM for optimization, most of generator
maintenances are carried out when the market clearing
price (MCP) is low. However, the obtained reserve rate
(9%) 1s sufficient to satisfy the requested supply reliability
through the targeted periods.

90% |
80%

70%

= 60%

[

= 50%

L+

Z 40% |1

Qo

3

& 30%
20%

10% |
0%

1 15 29 43 57 n 85 99 113 127 141

Terms[week]

I
| TRD
\

Fig. 8 Reserve rates obtained under both OLM and ARR

OLM — » — - =FCOST

|
OLM&FCOST)|
1

Table 2 Comparison of reserve rates under different ob-

Table 3 Comparison of costs under different objectives

Fuel cost | OLM cost Total cost
TRD 3,554 908 4462
OLM 3,630 734 4364
FCOST 3,498 868 4366
OLM&FCOST | 3,548 756 4304
unit is million JPYEN.

Table 4 Comparison of costs under different objectives

Fuel cost | OLM cost Total cost
TRD 100% 100% 100%
OLM 102% 81% 98%
FCOST 98% 96% 98%
OLM&FCOST 100% 83% 96%

jecttives
TRD | OLM | FCOST | OLM&FCOST
Minimum | 19% | 9% | 17% 10%
Maximum | 73% | 78% 80% 78%
Average | yio0 | 47% | 45% 47%
rate

Table 3 represents the fuel cost and the opportunity loss
by maintenance and total cost under each objective
function(each study case). Table 4 shows the ratio of each
study case and comparisons with the ratio under TRD. In
this table, the largest ratio obtained under TRD is set to be
100% for comparison. It shows that FCOST &0OLM gives
the lowest total cost and therefore the proposed method is
superior to the others in maintenance cost reductions. From
Table 3 and Table 4, we can see that by the proposed
objective function, OLM&FCOST, we can decrease the
total cost mostly. Concretely, under OLM&FCOST, the
total cost of maintenance can be decreased by 4 % and it is
about 158 million [JPYEN] lower than that obtained under
TRD.

These results show that the proposed method has
minimized the opportunity loss by maintenance and fuel
costs simultaneously with keeping the sufficient supply
reliability. If viewed from a different angle, the proposed
maintenance scheduling leads to increase of the profit for
GENCOS.

6. Conclusion

This paper proposed a new profit and cost based-
maintenance scheduling by making use of Reactive Tabu
search (RTS) in the competitive environment.

This maintenance scheduling approach introduced a
novel objective function; OLM to give consideration to
electricity volatilities in the electricity market. Firstly, the
electricity prices were forecasted at each maintenance
period using the three-layered feed-forward artificial neural
network and the interpolated bidding curve. Secondly, the
maintenance scheduling was formulated as a combinatorial
optimization problem and was solved by using Reactive
Tabu Search based on the forecasted electricity prices.

The proposed approach was applied to a practical
thermal plant maintenance scheduling having 26 units over
152 maintenance periods and the application results have
shown that the approach is effective and applicable to
actual maintenance scheduling and makes generation
companies profitable.

Appendix

The multi-layer perception (MLP) neural network is
applied to determine parameters for an autoregressive (AR)
model considering » discrete time periods below.
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e+ =a yth) +aptk D)+ +a,y(k—n+1) (A1)

where (k) is a time series datum observed.

A three layer MLP neural network, as shown in Fig. 2, is
introduced to obtain the AR model. All activation functions
in hidden layer are tanh(x) (described as f; in Fig. 2), and
the activation function in the output layer is

X(F(Z)= 300+ w,).
The output of the MLP is

np n
j;(k+1):2wj tanhliZwﬂ(o(l)+wj0}+wo (A2)
I=1

j=1
where
pDH)=yk-1+1), I1=1,2,...,n
W s
i Weight which connects input and hidden layer
W .
/. Weight which connects output and hidden layer
"h . Number of hidden neurons
w .
o weight which connects hidden layer and bias
"o : Weight which connects output layer and bias
0
w : Vector form of wy, [wy, wa, ... , wap)
Wvll

: Vector form of wy, [wiy, wap, ... , Wat)

The derivative of the output with respect to the input P
is

~ ny n
iG] = Z wiwgy {l—’[anh2 [Z wi g+ ijD
a@(l) j=t I=1 (A3)

Now, to make the model much simpler, linear activation
function for f; and Fy is applied to the MLP in Fig. 2, and
the linear output can be represented as follows:

np n
5)(k+1)= ZW] [Zwﬂ ‘(D(l)+Wj0i|+W0
(A4)

j=1 L=

and the derivative of the output with respect to the input
o)

B+ &
(k+1) _ S vy = WO/
op(l) =

(A5)

From Taylor series expansion, parameter a; is obtained
by

_ o+ _opk+D) o (A6)
ayky  dpl)

aq

In general, the parameters of the AR model (Al) can be
obtained as follows:

[ s,y |=[OW oW W] ] (A7)

From (A1) and (A7), the vector of the most likely demand
(crisp value) can be obtained.

For the linear activation function in the neural network
the inputs are scaled between 0.1 and 0.9 by the maximum
and minimum inputs of the time window considered below

Vk=1+D=s-y(k-1+1)+b (A8)
where
0.8
§= max min
y -y
and
b 0 lymax —O.9ymin
ymax _ ymin
where
Y = Max{y(k —1+1)]
!
Y = Ain] y(k —1+1)]
/
and

1=1,2,...,n

Because the time window for the training moves step by
step, Y™™ and y™ are subsequently updated for a correct
scaling. Outside this window there is no need of assuming
normal distribution of errors, which can give rise to the
difficulty of stationary in regular regression-based time
series modeling.
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