• 제목/요약/키워드: compensation of modeling

검색결과 281건 처리시간 0.029초

NC 밀링머신의 Volumetric 오차보상을 통한 포물면 가공의 정밀도 향상 (Enhancement of a parabolic face working accuracy using volumetric error compensation of NC milling machine)

  • 이찬호;정을섭;이응석;김성청
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.917-921
    • /
    • 2000
  • One of the major limitations of productivity and quality in machining is machining accuracy of the machine tools. The machining accuracy is affected by geometric, volumetric errors of the machine tools. This paper suggests the enhancement method of machining accuracy for precision machining of high quality metal reflection mirror or optics lens, etc. In this paper, we study 1) the compensation of linear pitch error with NC controller compensation function using laser interferometer measurement, 2) the method for enhancing the accuracy of NC milling machining by modeling and compensation of volumetric error, 3) the generation of the parabolic face profile. And the method is verified by the parabolic face machining experiment with a vertical three axes NC milling machine. After this study, we will inspect using On-machine measurement and study the repetitive machining by a compensated path

  • PDF

관측기를 갖는 2자유도 서보계의 승법적인 불확실성에 대한 강인한 안정성 (Robust stability of a two-degree-of-freedom servosystem incorporating an observer with multiplicative uncertainty)

  • 김영복;양주호
    • 제어로봇시스템학회논문지
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 1997
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers robust stability of this 2DOF servosystem incorporating an observer to the structured and unstructured uncertainties of the controlled plant. A robust stability condition is obtained using Riccati inequality, which is written in a linear matrix inequality (LMI) and independent of the gain of the integral compensator. This result impies that if the plant uncertainty is in the allowable set defined by the LMI condition, a high-gain integral compensation can be carried preserving robust stability to accelerate the tracking response.

  • PDF

먼지 피해의 환경분쟁조정 사례 분석과 배상액 산정안 제언 (Dispute Mediation Cases and Suggestions for Calculating Compensation for Dust Damage)

  • 박정호
    • 한국환경과학회지
    • /
    • 제32권10호
    • /
    • pp.693-701
    • /
    • 2023
  • In this study, we analyzed 82 dust damage dispute mediation cases over the past 5 years and evaluated cases where the probability of damage was verified through dust concentration measurement, modeling prediction, and chemical composition analysis. The cause of dust damage was a construction site, which accounted for most of the damage (97%), and was closely related to the distance from the construction site, total floor area of the construction site, and construction duration. Compensation was decided in only 33% of dust damage cases, and in only 6% (five cases) were damages determined using scientific techniques such as dust measurement, and forecasting. The main criteria for determining compensation were whether administrative measures were taken and evidence of damage in the form of videos and photos. In the future, measuring or model for the amount of dust damage is necessary to determine whether the limit has been exceeded and to revise the standard for calculating compensation through various lines of evidence of dust damage.

Improvement of the Performance of Hysteresis Compensation in SMA Actuators by Using Inverse Preisach Model in Closed - Loop Control System

  • Ahn Kyoung-Kwan;Kha Nguyen-Bao
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.634-642
    • /
    • 2006
  • The aim of this paper is to increase the performance of hysteresis compensation for Shape Memory Alloy (SMA) actuators by using inverse Preisach model in closed-loop control system. This is used to reduce hysteresis effects and improve accuracy for the displacement of SMA actuators. Firstly, hysteresis is identified by numerical Preisach model implementation. The geometrical interpretation from first order transition curves is used for hysteresis modeling. Secondly, the inverse Preisach model is formulated and incorporated in closed-loop PID control system in order to obtain desired current-to-displacement relationship with hysteresis reducing. The experimental results for hysteresis compensation by using this method are also shown in this paper.

보행항법장치의 모델링 및 오차 보정 (Modeling & Error Compensation of Walking Navigation System)

  • 조성윤;박찬국
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권6호
    • /
    • pp.221-227
    • /
    • 2002
  • In this paper, the system model for the compensation of the low-cost personal navigation system is derived and the error compensation method using GPS is also proposed. WNS(Walking Navigation System) is a kind of personal navigation system using the number of a walk, stride and azimuth. Because the accuracy of these variables determines the navigation performance, computational methods have been investigated. The step is detected using the walking patterns, stride is determined by neural network and azimuth is calculated with gyro output. The neural network filters off unnecessary motions. However, the error compensation method is needed, because the error of navigation information increases with time. In this paper, the accumulated error due to the step detection error, stride error and gyro bias is compensated by the integrating with GPS. Loosely coupled Kalman filter is used for the integration of WNS and GPS. It is shown by simulation that the error is bounded even though GPS signal is blocked.

기준물을 이용한 NC 공작기계의 오차규명 및 보상제어 (Error Identification and Compensation for NC Machine Tools Using the Reference Artifact)

  • 정성종
    • 한국생산제조학회지
    • /
    • 제9권2호
    • /
    • pp.102-111
    • /
    • 2000
  • Methodology of volumetric error identification and compensation is presented to improve the accuracy of NC machine tools by using a reference artifact and a touch trigger probe. Homogeneous transformation matrix and kinematic chain are used for modeling the geo-metric and thermal errors of a three-axis vertical machining center. The reference artifact is designed and fabricated to identify the model parameters by machine tool metrology. Parameters in the error model are able to be identified and updated by direct measurement of the reference artifact on the machine tool under the actual conditions which include the thermal interactions of error sources. A volumetric error compensation system based on IBM/PC is linked with a FANUC CNC controller to compensate for the identified volumetric error in machining workspace.

  • PDF

공작기계 오차 모델링과 보정에 관한 연구 (On Error Modeling and Compensation of Machine Tools)

  • 송일규;최영
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.98-107
    • /
    • 1996
  • The use of composite hyperpatch model is proposed to predict a machine tool positional error over the entire work space. This is an appropriate representation of the distorted work space. This model is valid for any configuration of 3-axis machine tool. Tool position, which is given NC data or CL data, contains error vector in actual work space. In this study, off-line compensation scheme was investigated for tool position error due to inaccuracy in machine tool structure. The error vector in actual work space is corrected by the error model using Newton-Raphson method. The proposed error compensation method shows the possibility of improving machine accuracy at a low cost.

  • PDF

고속카메라를 이용한 절삭공구변형의 보상에 관한 연구 (Compensation for Machining Error included by Tool Deflection Using High-Speed Camera)

  • 배종석;김건희;윤길상;서태일
    • 소성∙가공
    • /
    • 제16권1호
    • /
    • pp.15-19
    • /
    • 2007
  • This paper presents an integrated machining error compensation method based on captured images of tool deflection shapes in flat end-milling processes. This approach allows us to avoid modeling machining characteristics (cutting forces, tool deflections and machining errors etc.) and accumulating calculation errors induced by several simulations. For this, a high-speed camera captured images of real deformed tool shapes which were cutting under given machining conditions. Using image processes and a machining error model, it is possible to estimate tool deflection in cutting conditions modeled and to compensate for machining errors using an iterative algorithm correcting tool paths. This corrected tool path can effectively reduce machining errors in the flat end-milling process. Experiments are carried out to validate the approaches proposed in this paper. The proposed error compensation method can be effectively implemented in a real machining situation, producing much smaller errors.

네트워크 표현을 이용한 트윈서보 시스템의 모델링과 강건 동기 동작 제어 (Modeling and Robust Synchronizing Motion Control of Twin-Servo System Using Network Representation)

  • 김봉근;최현택;정완균;서일홍;송중호
    • 제어로봇시스템학회논문지
    • /
    • 제6권10호
    • /
    • pp.871-880
    • /
    • 2000
  • A twin-servo mechanism is used to increase the payload capacity and assembling speed of high precision motion control systems such as semiconductor chip mounters. In this paper, we focus on the modeling of the twin-servo system and propose its network representation. And also, we propose a robust synchronizing motion control algorithm to cancel out the skew motion of the twin-servo system caused by different dynamic characteristics of two driving systems and the vibration generated by high accelerating and decelerating motions. The proposed control algorithm consists of separate feedback motion control algorithms for each driving system and a skew motion compensation algorithm. A robust tracking controller based on internal-loop compensation is proposed as a separate motion controller and its disturbance attenuation property is shown. The skew motion compensation algorithm is also designed to maintain the synchronizing motion during high speed operation, and the stability of the whole closed loop system is proved based on passivity theory. Finally, experimental results are shown to illustrate control performance.

  • PDF

노인의 성공노화 구조모형 -선택.최적화.보상 전략을 중심으로- (Structural Equation Modeling on Successful Aging in Elders - Focused on Selection.Optimization.Compensation Strategy -)

  • 오두남
    • 대한간호학회지
    • /
    • 제42권3호
    • /
    • pp.311-321
    • /
    • 2012
  • Purpose: This study was designed to construct and test a structural equation modeling on specific domain health status and the Selection Optimization Compensation (SOC) strategy affecting successful aging in elderly people. Methods: The model construction was based on the SOC model by Baltes and Baltes. Interviews were done with 201 elderly people aged 65 or older. Interview contents included demographics, functional health status, emotional health status, social health status, SOC strategies, and successful aging. Data were analyzed using SPSS 15.0 and AMOS 7.0. Results: Model fit indices for the modified model were GFI=.93, CFI=.94, and RMSEA=.07. Three out of 7 paths were found to have a significant effect on successful aging in this final model. Functional health status had a direct and positive effect on successful aging. Emotional health status influenced successful aging through SOC strategies. Conclusion: This study suggests that interventions for improving functional health status and for strengthening SOC strategies are critical for successful aging. Continuous development of a variety of successful aging programs using SOC strategy is suggested.