• 제목/요약/키워드: comparative genomics analysis

검색결과 133건 처리시간 0.021초

Comparative chloroplast genomics and phylogenetic analysis of the Viburnum dilatatum complex (Adoxaceae) in Korea

  • PARK, Jongsun;XI, Hong;OH, Sang-Hun
    • 식물분류학회지
    • /
    • 제50권1호
    • /
    • pp.8-16
    • /
    • 2020
  • Complete chloroplast genome sequences provide detailed information about any structural changes of the genome, instances of phylogenetic reconstruction, and molecular markers for fine-scale analyses. Recent developments of next-generation sequencing (NGS) tools have led to the rapid accumulation of genomic data, especially data pertaining to chloroplasts. Short reads deposited in public databases such as the Sequence Read Archive of the NCBI are open resources, and the corresponding chloroplast genomes are yet to be completed. The V. dilatatum complex in Korea consists of four morphologically similar species: V. dilatatum, V. erosum, V. japonicum, and V. wrightii. Previous molecular phylogenetic analyses based on several DNA regions did not resolve the relationship at the species level. In order to examine the level of variation of the chloroplast genome in the V. dilatatum complex, raw reads of V. dilatatum deposited in the NCBI database were used to reconstruct the whole chloroplast genome, with these results compared to the genomes of V. erosum, V. japonicum, and three other species in Viburnum. These comparative genomics results found no significant structural changes in Viburnum. The degree of interspecific variation among the species in the V. dilatatum complex is very low, suggesting that the species of the complex may have been differentiated recently. The species of the V. dilatatum complex share large unique deletions, providing evidence of close relationships among the species. A phylogenetic analysis of the entire genome of the Viburnum showed that V. dilatatum is a sister to one of two accessions of V. erosum, making V. erosum paraphyletic. Given that the overall degree of variation among the species in the V. dilatatum complex is low, the chloroplast genome may not provide a phylogenetic signal pertaining to relationships among the species.

Current Insights into Research on Rice stripe virus

  • Cho, Won Kyong;Lian, Sen;Kim, Sang-Min;Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제29권3호
    • /
    • pp.223-233
    • /
    • 2013
  • Rice stripe virus (RSV) is one of the most destructive viruses of rice, and greatly reduces rice production in China, Japan, and Korea, where mostly japonica cultivars of rice are grown. RSV is transmitted by the small brown plant-hopper (SBPH) in a persistent and circulative-propagative manner. Several methods have been developed for detection of RSV, which is composed of four single-stranded RNAs that encode seven proteins. Genome sequence data and comparative phylogenetic analysis have been used to identify the origin and diversity of RSV isolates. Several rice varieties resistant to RSV have been selected and QTL analysis and fine mapping have been intensively performed to map RSV resistance loci or genes. RSV genes have been used to generate several genetically modified transgenic rice plants with RSV resistance. Recently, genome-wide transcriptome analyses and deep sequencing have been used to identify mRNAs and small RNAs involved in RSV infection; several rice host factors that interact with RSV proteins have also been identified. In this article, we review the current statues of RSV research and propose integrated approaches for the study of interactions among RSV, rice, and the SBPH.

Comparative analysis of the transcriptomes and primary metabolite profiles of adventitious roots of five Panax ginseng cultivars

  • Lee, Yun Sun;Park, Hyun-Seung;Lee, Dong-Kyu;Jayakodi, Murukarthick;Kim, Nam-Hoon;Lee, Sang-Choon;Kundu, Atreyee;Lee, Dong-Yup;Kim, Young Chang;In, Jun Gyo;Kwon, Sung Won;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제41권1호
    • /
    • pp.60-68
    • /
    • 2017
  • Background: Various Panax ginseng cultivars exhibit a range of diversity for morphological and physiological traits. However, there are few studies on diversity of metabolic profiles and genetic background to understand the complex metabolic pathway in ginseng. Methods: To understand the complex metabolic pathway and related genes in ginseng, we tried to conduct integrated analysis of primary metabolite profiles and related gene expression using five ginseng cultivars showing different morphology. We investigated primary metabolite profiles via gas chromatography-mass spectrometry (GC-MS) and analyzed transcriptomes by Illumina sequencing using adventitious roots grown under the same conditions to elucidate the differences in metabolism underlying such genetic diversity. Results: GC-MS analysis revealed that primary metabolite profiling allowed us to classify the five cultivars into three independent groups and the grouping was also explained by eight major primary metabolites as biomarkers. We selected three cultivars (Chunpoong, Cheongsun, and Sunhyang) to represent each group and analyzed their transcriptomes. We inspected 100 unigenes involved in seven primary metabolite biosynthesis pathways and found that 21 unigenes encoding 15 enzymes were differentially expressed among the three cultivars. Integrated analysis of transcriptomes and metabolomes revealed that the ginseng cultivars differ in primary metabolites as well as in the putative genes involved in the complex process of primary metabolic pathways. Conclusion: Our data derived from this integrated analysis provide insights into the underlying complexity of genes and metabolites that co-regulate flux through these pathways in ginseng.

Prospect of plant molecular cytogenetics in the 21st century

  • Mukai, Yasuhiko
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2003년도 제40회 국제학술심포지움
    • /
    • pp.14-27
    • /
    • 2003
  • The genomes of Arabidopsis and rice have been fully sequenced. Genomic sequencing provides global information about genome structure and organization. A comprehensive research account of our recent studies conducted on genome painting, comparative genomics and genome fusion is provided in order to project the prospects of plant cytogenetic research in post-genomics era. Genome analysis by GISH using genome painting is demonstrated as an excellent means suitable for visualization of a whole genome, since total genomic DNA representing the overall molecular composition of the genome is used as a probe. FISH on extended DNA fibers has been developed for high-resolution FISH and has contributed to determining the copy number and order of genes. We have also mapped a number of genes involving starch synthesis on wheat chromosomes by FISH and compared the position of these genes on linkage map of rice. Macro synteny between wheat and rice can be observed by comparing the location of these genes in spite of the fact that the size of DNA per chromosome differs by 20 fold in two. Moreover, to approach our goal towards making bread and udon noodles from rice flour in future by incorporating bread making and the noodle qualifies in rice, we have been successful in introducing large genomic DNA fragments containing agronomically important genes of wheat into a rice by successive introduction of large insert BAC clones, there by expanding genetic variability in rice. We call this method genome fusion.

  • PDF

The Complete Chloroplast Genome Sequence and Intra-Species Diversity of Rhus chinensis

  • Kim, Inseo;Park, Jee Young;Lee, Yun Sun;Joh, Ho Jun;Kang, Shin Jae;Murukarthick, Jayakodi;Lee, Hyun Oh;Hur, Young-Jin;Kim, Yong;Kim, Kyung Hoon;Lee, Sang-Choon;Yang, Tae-Jin
    • Plant Breeding and Biotechnology
    • /
    • 제5권3호
    • /
    • pp.243-251
    • /
    • 2017
  • Rhus chinensis is a shrub widely distributed in Asia. It has been used for traditional medicine and ecological restoration. Here, we report the complete chloroplast genome sequence of two R. chinensis genotypes collected from China and Korea. The assembled chloroplast genome of Chinese R. chinensis is 149,094 bp long, consisting of a large single copy (97,246 bp), a small single copy (18,644 bp) and a pair of inverted repeats (16,602 bp). Gene annotation revealed 77 protein coding genes, 30 tRNA genes, and 4 rRNA genes. A phylogenomic analysis of the chloroplast genomes with 11 known complete chloroplast genomes clarified the relationship of R. chinensis with the other plant species in the Sapindales order. A comparative chloroplast genome analysis identified 170 SNPs and 85 InDels at intra-species level of R. chinensis between Chinese and Korean collections. Based on the sequence diversity between Korea and Chinese R. chinensis plants, we developed three DNA markers useful for genetic diversity and authentication system. The chloroplast genome information obtained in this study will contribute to enriching genetic resources and conservation of endemic Rhus species.

Comparative transcriptome and metabolome analyses of four Panax species explore the dynamics of metabolite biosynthesis

  • Hyunjin, Koo;Yun Sun, Lee;Van Binh, Nguyen;Vo Ngoc Linh, Giang;Hyun Jo, Koo;Hyun-Seung, Park;Padmanaban, Mohanan;Young Hun, Song;Byeol, Ryu;Kyo Bin, Kang;Sang Hyun, Sung;Tae-Jin, Yang
    • Journal of Ginseng Research
    • /
    • 제47권1호
    • /
    • pp.44-53
    • /
    • 2023
  • Background: The genus Panax in the Araliaceae family has been used as traditional medicinal plants worldwide and is known to biosynthesize ginsenosides and phytosterols. However, genetic variation between Panax species has influenced their biosynthetic pathways is not fully understood. Methods: Simultaneous analysis of transcriptomes and metabolomes obtained from adventitious roots of two tetraploid species (Panax ginseng and P. quinquefolius) and two diploid species (P. notoginseng and P. vietnamensis) revealed the diversity of their metabolites and related gene expression profiles. Results: The transcriptome analysis showed that 2,3-OXIDOSQUALENE CYCLASEs (OSCs) involved in phytosterol biosynthesis are upregulated in the diploid species, while the expression of OSCs contributing to ginsenoside biosynthesis is higher in the tetraploid species. In agreement with these results, the contents of dammarenediol-type ginsenosides were higher in the tetraploid species relative to the diploid species. Conclusion: These results suggest that a whole-genome duplication event has influenced the triterpene biosynthesis pathway in tetraploid Panax species during their evolution or ecological adaptation. This study provides a basis for further efforts to explore the genetic variation of the Panax genus.

RAN-aCGH: R GUI Tools for Analysis and Visualization of an Array-CGH Experiment

  • Kim, Sang-Cheol;Kim, Byung-Soo
    • Genomics & Informatics
    • /
    • 제5권3호
    • /
    • pp.137-139
    • /
    • 2007
  • RAN-aCGH is an R GUI tool for the analysis and visualization of array comparative genomic hybridization (array-CGH) experiments. The tool consists of data-loading, preprocessing for missing data, several methods for statistical identification of DNA copy number aberration, and visualization of the copy number change. RAN-aCGH requires a single input format, provides various visualizations, and allows the addition of a new statistical method, all in a user-friendly graphic user interface (GUI).

Computational Identification and Comparative Genomic Analysis of Soybean Oxidative Stress-Related Genes

  • Arti, Sharma;Mun, Bong-Gyu;Yun, Byung-Wook
    • Current Research on Agriculture and Life Sciences
    • /
    • 제32권1호
    • /
    • pp.43-52
    • /
    • 2014
  • Reactive oxygen and nitrogen species (ROS and RNS, respectively) are messengers that carry signals to alter the redox state in order to activate plant responses and other physiological processes, such as differentiation, aging, senescence, and pathogen defense. Quite a large number of genes are involved in this signaling and lead to oxidative stress in plants. Although the role of ROS/RNS during stress conditions is well documented, a comprehensive list of genes and comparative study of these genes has not yet been completed. Accordingly, the in silico identification of oxidative stress-related genes was performed for soybeans and Arabidopsis. These genes were also studied in relation to multiple domain prediction. The presence of domains like dehydogenase and ATPase suggests that these genes are involved in various metabolic processes, as well as the transportation of ions under optimal environmental conditions. In addition to a sequence analysis, a phylogenetic analysis was also performed to identify orthologous pairs among the soybean and Arabidopsis oxidative stress-related genes based on neighbor joining. This study was also conducted with the objective of further understanding the complex molecular signaling mechanism in plants under various stress conditions.

Discrimination and Authentication of Eclipta prostrata and E. alba Based on the Complete Chloroplast Genomes

  • Kim, Inseo;Park, Jee Young;Lee, Yun Sun;Lee, Hyun Oh;Park, Hyun-Seung;Jayakodi, Murukarthick;Waminal, Nomar Espinosa;Kang, Jung Hwa;Lee, Taek Joo;Sung, Sang Hyun;Kim, Kyu Yeob;Yang, Tae-Jin
    • Plant Breeding and Biotechnology
    • /
    • 제5권4호
    • /
    • pp.334-343
    • /
    • 2017
  • Eclipta prostrata and E. alba are annual herbal medicinal plants and have been used as Chinese medicinal tonics. Both species are widely distributed in tropical and subtropical regions as well as in Korea. Both species have similar morphological features but E. alba has smoother leaf blade margins compared with E. prostrata. Although both species are utilized as oriental medicines, E. prostrata is more widely used than E. alba. Morphological semblances have confounded identification of either species. Here, we report the complete chloroplast genomes of both species to provide an authentication system between the two species and understand their diversity. Both chloroplast genomes were 151,733-151,757 bp long and composed of a large single copy (83,285-83,300 bp), a small single copy (18,283-18,346 bp), and a pair of inverted repeats (25,075-25,063 bp). Gene annotation revealed 80 protein coding genes, 30 tRNA genes and four rRNA genes. A phylogenetic analysis revealed that the genus Eclipta is grouped with Heliantheae tribe species in the Asteraceae family. A comparative analysis verified 29 InDels and 58 SNPs between chloroplast genomes of E. prostrata and E. alba. The low chloroplast genome sequence diversity indicates that both species are really close to each other and are not completely diverged yet. We developed six DNA markers that distinguish E. prostrata and E. alba based on the polymorphisms of chloroplast genomes between E. prostrata and E. alba. The chloroplast genome sequences and the molecular markers generated in this study will be useful for further research of Eclipta species and accurate classification of medicinal herbs.

Molecular Genetics of the Model Legume Medicago truncatula

  • Nam, Young-Woo
    • The Plant Pathology Journal
    • /
    • 제17권2호
    • /
    • pp.67-70
    • /
    • 2001
  • Medicago truncatula is a diploid legume plant related to the forage crop alfalfa. Recently, it has been chosen as a model species for genomic studies due to its small genome, self-fertility, short generation time, and high transformation efficiency. M. truncatula engages in symbiosis with nitrogen-fixing soil bacterium Rhizobium meliloti. M. truncatula mutants that are defective in nodulation and developmental processes have been generated. Some of these mutants exhibited altered phenotypes in symbiotic responses such as root hair deformation, expression of nodulin genes, and calcium spiking. Thus, the genes controlling these traits are likely to encode functions that are required for Nod-factor signal transduction pathways. To facilitate genome analysis and map-based cloning of symbiotic genes, a bacterial artificial chromosome library was constructed. An efficient polymerase chain reaction-based screening of the library was devised to fasten physical mapping of specific genomic regions. As a genomics approach, comparative mapping revealed high levels of macro- and microsynteny between M. truncatula and other legume genomes. Expressed sequence tags and microarray profiles reflecting the genetic and biochemical events associated with the development and environmental interactions of M. truncatula are assembled in the databases. Together, these genomics programs will help enrich our understanding of the legume biology.

  • PDF