DOI QR코드

DOI QR Code

Current Insights into Research on Rice stripe virus

  • Cho, Won Kyong (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lian, Sen (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Sang-Min (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Park, Sang-Ho (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Kook-Hyung (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2012.10.28
  • Accepted : 2012.11.28
  • Published : 2013.09.01

Abstract

Rice stripe virus (RSV) is one of the most destructive viruses of rice, and greatly reduces rice production in China, Japan, and Korea, where mostly japonica cultivars of rice are grown. RSV is transmitted by the small brown plant-hopper (SBPH) in a persistent and circulative-propagative manner. Several methods have been developed for detection of RSV, which is composed of four single-stranded RNAs that encode seven proteins. Genome sequence data and comparative phylogenetic analysis have been used to identify the origin and diversity of RSV isolates. Several rice varieties resistant to RSV have been selected and QTL analysis and fine mapping have been intensively performed to map RSV resistance loci or genes. RSV genes have been used to generate several genetically modified transgenic rice plants with RSV resistance. Recently, genome-wide transcriptome analyses and deep sequencing have been used to identify mRNAs and small RNAs involved in RSV infection; several rice host factors that interact with RSV proteins have also been identified. In this article, we review the current statues of RSV research and propose integrated approaches for the study of interactions among RSV, rice, and the SBPH.

Keywords

References

  1. Abo, M. E. and Sy, A. A. 1997. Rice virus diseases: epidemiology and management strategies. J. Sustain. Agr. 11:113-134. https://doi.org/10.1300/J064v11n02_09
  2. Barbier, P., Takahashi, M., Nakamura, I., Toriyama, S. and Ishihama, A. 1992. Solubilization and promoter analysis of RNA polymerase from Rice stripe virus. J. Virol. 66:6171-6174.
  3. Cai, L., Ma, X., Lin, K., Deng, K., Zhao, S. and Li, C. 2003. Detecting Rice stripe virus (RSV) in the small brown planthopper Laodelphax striatellus with high specificity by RT-PCR. J. Virol. Methods 112:115-120. https://doi.org/10.1016/S0166-0934(03)00200-3
  4. Cheng, E. and Mir, M. A. 2012. Signatures of host mRNA 5' terminus for efficient Hantavirus cap snatching. J. Virol. 86: 10173-10185. https://doi.org/10.1128/JVI.05560-11
  5. Dias, A., Bouvier, D., Crepin, T., McCarthy, A. A., Hart, D. J., Baudin, F., Cusack, S. and Ruigrok, R. W. H. 2009. The capsnatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458:914-918. https://doi.org/10.1038/nature07745
  6. Ding, X. L., Jiang, L., Wang, C. M., CHen, L. M., Cheng, Z. B., Fan, Y. J., Zhou, Y. J. and Wan, J. M. 2004. QTL analysis for rice stripe disease resistance gene using recombinant inbred lines (RILs) derived from crossing of Kinmaze and DV85. J. Gen. Genom. 31:287-292.
  7. Du, P., Wu, J., Zhang, J., Zhao, S., Zheng, H., Gao, G., Wei, L. and Li, Y. 2011. Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors. PLoS Pathog. 7:e1002176. https://doi.org/10.1371/journal.ppat.1002176
  8. Du, Z., Xiao, D., Wu, J., Jia, D., Yuan, Z., Liu, Y., Hu, L., Han, Z., Wei, T., Lin, Q., Wu, Z. and Xie, L. 2011. p2 of Rice stripe virus (RSV) interacts with OsSGS3 and is a silencing suppressor. Mol. Plant Pathol. 12:808-814. https://doi.org/10.1111/j.1364-3703.2011.00716.x
  9. Falk, B. W. and Tsai, J. H. 1998. Biology and molecular biology of viruses in the genus Tenuivirus. Annu. Rev. Phytopathol. 36:139-163. https://doi.org/10.1146/annurev.phyto.36.1.139
  10. Hamamatsu, C., Toriyama, S., Toyoda, T. and Ishihama, A. 1993. Ambisense coding strategy of the Rice stripe virus genome: in vitro translation studies. J. Gen. Virol. 74:1125. https://doi.org/10.1099/0022-1317-74-6-1125
  11. Hao, Z., Wang, L., He, Y., Liang, J. and Tao, R. 2011. Expression of defense genes and activities of antioxidant enzymes in rice resistance to Rice stripe virus and small brown planthopper. Plant Physiol. Biochem. 49:744-751. https://doi.org/10.1016/j.plaphy.2011.01.014
  12. Hayakawa, T., Zhu, Y., Itoh, K., Kimura, Y., Izawa, T., Shimamoto, K. and Toriyama, S. 1992. Genetically engineered rice resistant to Rice stripe virus, an insect-transmitted virus. Proc. Natl. Acad. Sci. 89:9865. https://doi.org/10.1073/pnas.89.20.9865
  13. Hayano-Saito, Y., Saito, K., Nakamura, S., Kawasaki, S. and Iwasaki, M. 2000. Fine physical mapping of the rice stripe resistance gene locus, Stvb-i. Theor. Appl. Genet. 101:59-63. https://doi.org/10.1007/s001220051449
  14. Hayano-Saito, Y., Tsuji, T., Fujii, K., Saito, K., Iwasaki, M. and Saito, A. 1998. Localization of the rice stripe disease resistance gene, Stv-bi, by graphical genotyping and linkage analyses with molecular markers. Theor. Appl. Genet. 96:1044-1049. https://doi.org/10.1007/s001220050837
  15. Hayano, Y., Kakutani, T., Hayashi, T. and Minobe, Y. 1990. Coding strategy of Rice stripe virus: major nonstructural protein is encoded in viral RNA segment 4 and coat protein in RNA complementary to segment 3. Virology 177:372-374. https://doi.org/10.1016/0042-6822(90)90493-B
  16. Hibino, H. 1996. Biology and epidemiology of rice viruses. Annu. Rev. Phytopathol. 34:249-274. https://doi.org/10.1146/annurev.phyto.34.1.249
  17. Ise, K., Ishikawa, K., Li, C. and Ye, C. 2002. Inheritance of resistance to Rice stripe virus in rice line 'BL 1'. Euphytica 127:185-191. https://doi.org/10.1023/A:1020286412751
  18. Ishikawa, K., Omura, T. and Hibino, H. 1989. Morphological characteristics of Rice stripe virus. J. Gen. Virol. 70:3465-3468. https://doi.org/10.1099/0022-1317-70-12-3465
  19. Jiang, L., Qian, D., Zheng, H., Meng, L. Y., Chen, J., Le, W. J., Zhou, T., Zhou, Y. J., Wei, C. H. and Li, Y. 2012. RNA-dependent RNA polymerase 6 of rice (Oryza sativa) plays role in host defense against negative-strand RNA virus, Rice stripe virus. Virus Res. 163:512-519. https://doi.org/10.1016/j.virusres.2011.11.016
  20. Jonson, M. G., Choi, H. S., Kim, J. S., Choi, I. R. and Kim, K. H. 2009. Complete genome sequence of the RNAs 3 and 4 segments of Rice stripe virus isolates in Korea and their phylogenetic relationships with Japan and China isolates. Plant Pathol. J. 25:142-150. https://doi.org/10.5423/PPJ.2009.25.2.142
  21. Jonson, M. G., Choi, H. S., Kim, J. S., Choi, I. R. and Kim, K. H. 2009. Sequence and phylogenetic analysis of the RNA1 and RNA2 segments of Korean Rice stripe virus isolates and comparison with those of China and Japan. Arch. Virol. 154:1705-1708. https://doi.org/10.1007/s00705-009-0493-7
  22. Kakutani, T., Hayano, Y., Hayashi, T. and Minobe, Y. 1990. Ambisense segment 4 of Rice stripe virus: possible evolutionary relationship with phleboviruses and uukuviruses (Bunyaviridae). J. Gen Virol. 71:1427-1432. https://doi.org/10.1099/0022-1317-71-7-1427
  23. Kakutani, T., Hayano, Y., Hayashi, T. and Minobe, Y. 1991. Ambisense segment 3 of Rice stripe virus: the first instance of a virus containing two ambisense segments. J. Gen. Virol. 72:465-468. https://doi.org/10.1099/0022-1317-72-2-465
  24. Kim, K., Choi, D., Kim, S. M., Kwak, D. Y., Choi, J., Lee, S., Lee, B. C., Hwang, D. and Hwang, I. 2012. A systems approach for identifying resistance factors to Rice stripe virus. Mol. Plant Microbe. Interact. 25:534-545. https://doi.org/10.1094/MPMI-11-11-0282
  25. Kisimoto, R. 1967. Genetic variation in the ability of a planthopper vector; Laodelphax striatellus (Fallen) to acquire the Rice stripe virus. Virology 32:144-152. https://doi.org/10.1016/0042-6822(67)90262-0
  26. Kwon, T., Lee, J. H., Park, S. K., Hwang, U. H., Cho, J. H., Kwak, D. Y., Youn, Y. N., Yeo, U. S., Song, Y. C. and Nam, J. 2012. Fine mapping and identification of candidate rice genes associated with qSTV11SG, a major QTL for rice stripe disease resistance. Theor. Appl. Genet. 125:1-14. https://doi.org/10.1007/s00122-012-1829-3
  27. Le, D. T., Netsu, O., Uehara-Ichiki, T., Shimizu, T., Choi, I. R., Omura, T. and Sasaya, T. 2010. Molecular detection of nine rice viruses by a reverse-transcription loop-mediated isothermal amplification assay. J. Virol. Methods 170:90-93. https://doi.org/10.1016/j.jviromet.2010.09.004
  28. Lee, B. C., Yoon, Y. N., Hong, S. J., Hong, Y. K., Kwak, D. Y., Lee, J. H., Yae, U. S., Kang, H. W. and Hwang, H. G. 2008. Analysis on the occurrence of Rice stripe virus. Res. Plant Dis. 14:210-213. https://doi.org/10.5423/RPD.2008.14.3.210
  29. Li, S., Li, X., Sun, L. and Zhou, Y. 2012. Analysis of Rice stripe virus whole-gene expression in rice and in the small brown planthopper by real-time quantitative PCR. Acta Virol. 56:75-79. https://doi.org/10.4149/av_2012_01_75
  30. Li, S., Xiong, R., Wang, X. and Zhou, Y. 2011. Five proteins of Laodelphax striatellus are potentially involved in the interactions between Rice stripe virus and vector. PLoS One 6:e26585. https://doi.org/10.1371/journal.pone.0026585
  31. Lian, S., Jonson, M. G., Cho, W. K., Choi, H. S., Je, Y. H. and Kim, K. H. 2011. Generation of antibodies against Rice stripe virus proteins based on recombinant proteins and synthetic polypeptides. Plant Pathol. J. 27:37-43. https://doi.org/10.5423/PPJ.2011.27.1.037
  32. Liang, D., Ma, X., Qu, Z. and Hull, R. 2005. Nucleic acid binding property of the gene products of Rice stripe virus. Virus Genes 31:203-209. https://doi.org/10.1007/s11262-005-1797-7
  33. Liang, D., Qu, Z., Ma, X. and Hull, R. 2005. Detection and localization of Rice stripe virus gene products in vivo. Virus Genes 31:211-221. https://doi.org/10.1007/s11262-005-1798-6
  34. Lu, L., Du, Z., Qin, M., Wang, P., Lan, H., Niu, X., Jia, D., Xie, L. and Lin, Q. 2009. Pc4, a putative movement protein of Rice stripe virus, interacts with a type I DnaJ protein and a small Hsp of rice. Virus Genes 38:320-327. https://doi.org/10.1007/s11262-008-0324-z
  35. Ma, J., Song, Y., Wu, B., Jiang, M., Li, K., Zhu, C. and Wen, F. 2011. Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference. Transgenic Res. 20:1367-1377. https://doi.org/10.1007/s11248-011-9502-1
  36. Maeda, H., Matsushita, K., Iida, S. and Sunohara, Y. 2006. Characterization of two QTLs controlling resistance to Rice stripe virus detected in a Japanese upland rice line, Kanto 72. Breeding Sci. 56:359-364. https://doi.org/10.1270/jsbbs.56.359
  37. McCough, S. R. and Doerge, R. W. 1995. QTL mapping in rice. Trends Genet. 11:482-487. https://doi.org/10.1016/S0168-9525(00)89157-X
  38. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:e63-e63. https://doi.org/10.1093/nar/28.12.e63
  39. Nuruzzaman, M., Manimekalai, R., Sharoni, A. M., Satoh, K., Kondoh, H., Ooka, H. and Kikuchi, S. 2010. Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30-44. https://doi.org/10.1016/j.gene.2010.06.008
  40. Otuka, A., Matsumura, M., Sanada-Morimura, S., Takeuchi, H., Watanabe, T., Ohtsu, R. and Inoue, H. 2010. The 2008 overseas mass migration of the small brown planthopper, Laodelphax striatellus, and subsequent outbreak of rice stripe disease in western Japan. Appl. Entomol. Zoo. 45:259-266. https://doi.org/10.1303/aez.2010.259
  41. Pan, X., Liang, G., Chen, Z. and Zhang, Y. 2005. Breeding strategy on resistance to rice stripe in Jiangsu. Jiangsu Agr. Sci. 5:22-23.
  42. Pan, X. B., Chen, Z. X., Zuo, S. M., Zhang, Y. F., Wu, X. J., Ma, N., Jiang, Q. X., Que, J. H. and Zhou, C. H. 2009. A new rice cultivar Wulingjing 1 resistant to Rice stripe virus developed by marker assisted selection. Acta Agron. Sin. 35:1851-1857.
  43. Park, H. M., Choi, M. S., Kwak, D. Y., Lee, B. C., Lee, J. H., Kim, M. K., Kim, Y. G., Shin, D. B., Park, S. K. and Kim, Y. H. 2012. Suppression of NS3 and MP is important for the stable inheritance of RNAi-mediated Rice stripe virus (RSV) resistance obtained by targeting the fully complementary RSV-CP gene. Mol. Cells 33:1-9. https://doi.org/10.1007/s10059-012-2299-9
  44. Satoh, K., Kondoh, H., Sasaya, T., Shimizu, T., Choi, I. R., Omura, T. and Kikuchi, S. 2010. Selective modification of rice (Oryza sativa) gene expression by Rice stripe virus infection. J. Gen. Virol. 91:294-305. https://doi.org/10.1099/vir.0.015990-0
  45. Sharoni, A. M., Nuruzzaman, M., Satoh, K., Shimizu, T., Kondoh, H., Sasaya, T., Choi, I. R., Omura, T. and Kikuchi, S. 2011. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol. 52:344-360. https://doi.org/10.1093/pcp/pcq196
  46. Shen, M., Xu, Y., Jia, R., Zhou, X. and Ye, K. 2010. Size-independent and noncooperative recognition of dsRNA by the Rice stripe virus RNA silencing suppressor NS3. J. Mol. Biol. 404:665. https://doi.org/10.1016/j.jmb.2010.10.007
  47. Shimizu, T., Nakazono-Nagaoka, E., Uehara-Ichiki, T., Sasaya, T. and Omura, T. 2011. Targeting specific genes for RNA interference is crucial to the development of strong resistance to Rice stripe virus. Plant Biotechnol. J. 9:503-512. https://doi.org/10.1111/j.1467-7652.2010.00571.x
  48. Shimizu, T., Toriyama, S., Takahashi, M., Akutsu, K. and Yoneyama, K. 1996. Non-viral sequences at the 5 termini of mRNAs derived from virus-sense and virus-complementary sequences of the ambisense RNA segments of Rice stripe tenuivirus. J. Gen. Virol. 77:541-546. https://doi.org/10.1099/0022-1317-77-3-541
  49. Sun, F., Yuan, X., Zhou, T., Fan, Y. and Zhou, Y. 2011. Arabidopsis is Susceptible to Rice stripe virus Infections. J. Phytopathol. 159:767-772. https://doi.org/10.1111/j.1439-0434.2011.01840.x
  50. Suzuki, Y., Fuji, S., Takahashi, Y. and Kojima, M. 1992. Immunogold localization of Rice stripe virus particle antigen in thin sections of insect host cells. Ann. Phytopathol. Soc. Jpn. 58:480-480. https://doi.org/10.3186/jjphytopath.58.480
  51. Takahashi, M., Goto, C., Ishikawa, K., Matsuda, I., Toriyama, S. and Tsuchiya, K. 2003. Rice stripe virus 23.9 K protein aggregates and forms inclusion bodies in cultured insect cells and virus-infected plant cells. Arch. Virol. 148:2167-2179. https://doi.org/10.1007/s00705-003-0171-0
  52. Takahashi, M., Toriyama, S., Hamamatsu, C. and Ishihama, A. 1993. Nucleotide sequence and possible ambisense coding strategy of Rice stripe virus RNA segment 2. J. Gen. Virol. 74:769-773. https://doi.org/10.1099/0022-1317-74-4-769
  53. Takahashi, M., Toriyama, S., Kikuchi, Y., Hayakawa, T. and Ishihama, A. 1990. Complementarity between the 5'-and 3'-terminal sequences of Rice stripe virus RNAs. J. Gen. Virol. 71:2817-2821. https://doi.org/10.1099/0022-1317-71-12-2817
  54. Takahashi, Y., Omura, T., Shohara, K. and Tsuchizaki, T. 1991. Comparison of four serological methods for practical detection of ten viruses of rice in plants and insects. Plant Dis. 75:458-461. https://doi.org/10.1094/PD-75-0458
  55. Toriyama, S., Takahashi, M., Sano, Y., Shimizu, T. and Ishihama, A. 1994. Nucleotide sequence of RNA 1, the largest genomic segment of Rice stripe virus, the prototype of the tenuiviruses. J. Gen. Virol. 75:3569. https://doi.org/10.1099/0022-1317-75-12-3569
  56. Wang, B., Jiang, L., Zhang, Y., Zhang, W., Wang, Q., Liu, S., Liu, Y., Cheng, X., Zhai, H. and Wan, J. 2011. Genetic dissection of the resistance to Rice stripe virus present in the indica rice cultivar ‘IR24’. Genome 54:611-619. https://doi.org/10.1139/g11-022
  57. Wang, H. D., Chen, J. P., Zhang, H. M., Sun, X. L., Zhu, J. L., Wang, A. G., Sheng, W. X. and Adams, M. 2008. Recent Rice stripe virus epidemics in Zhejiang province, China, and experiments on sowing date, disease-yield loss relationships, and seedling susceptibility. Plant Dis. 92:1190-1196. https://doi.org/10.1094/PDIS-92-8-1190
  58. Wang, Y., Xue, Y. and Li, J. 2005. Towards molecular breeding and improvement of rice in China. Trends Plant Sci. 10:610-614. https://doi.org/10.1016/j.tplants.2005.10.008
  59. Washio, O., Ezuka, A., Toriyama, K. and Sakurai, Y. 1968. Studies on the breeding of rice varieties resistant to stripe disease II. Genetic study on resistance to stripe disease in Japanese upland rice. Jpn. J. Breed 18:96-101. https://doi.org/10.1270/jsbbs1951.18.96
  60. Washio, O., Ezuka, A., Toriyama, K. and Sakurai, Y. 1968. Studies on the breeding of rice varieties resistant to stripe disease III. Genetic studies on resistance to stripe disease in foreign varieties. Jpn. J. Breed 18:167-172. https://doi.org/10.1270/jsbbs1951.18.167
  61. Wei, T. Y., Yang, J. G., Liao, F. L., Gao, F. L., Lu, L. M., Zhang, X. T., Li, F., Wu, Z. J., Lin, Q. Y. and Xie, L. H. 2009. Genetic diversity and population structure of Rice stripe virus in China. J. Gen. Virol. 90:1025. https://doi.org/10.1099/vir.0.006858-0
  62. Wu, S. J., Zhong, H., Zhou, Y., Zuo, H., Zhou, L. H., Zhu, J. Y., Ji, C. Q., Gu, S. L., Gu, M. H. and Liang, G. H. 2009. Identification of QTLs for the resistance to Rice stripe virus in the indica rice variety Dular. Euphytica 165:557-565. https://doi.org/10.1007/s10681-008-9779-1
  63. Wu, X., Zuo, S., Chen, Z., Zhang, Y., Zhu, J., Ma, N., Tang, J., Chu, C. and Pan, X. 2011. Fine mapping of qSTV11TQ, a major gene conferring resistance to rice stripe disease. Theor. Appl. Genet. 122:915-923. https://doi.org/10.1007/s00122-010-1498-z
  64. Xiong, R., Wu, J., Zhou, Y. and Zhou, X. 2008. Identification of a movement protein of the tenuivirus Rice stripe virus. J. Virol. 82:12304-12311. https://doi.org/10.1128/JVI.01696-08
  65. Xiong, R., Wu, J., Zhou, Y. and Zhou, X. 2009. Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virology 387:29-40. https://doi.org/10.1016/j.virol.2009.01.045
  66. Yan, F., Zhang, H., Adams, M. J., Yang, J., Peng, J., Antoniw, J. F., Zhou, Y. and Chen, J. 2010. Characterization of siRNAs derived from Rice stripe virus in infected rice plants by deep sequencing. Arch. Virol. 155:935-940. https://doi.org/10.1007/s00705-010-0670-8
  67. Yang, J. G., Wang, W. T., Ding, X. L., Guo, L. J., Fang, Z. X., Xie, L. Y., Lin, Q. Y., Wu, Z. J. and Xie, L. H. 2010. Auxin regulation in the interaction between Rice stripe virus and rice. Chinese J. Agr. Biotechnol. 6:27.
  68. Yao, M., Zhang, T., Zhou, T., Zhou, Y., Zhou, X. and Tao, X. 2012. Repetitive prime-and-realign mechanism converts short capped RNA leaders into longer ones that may be more suitable for elongation during Rice stripe virus transcription initiation. J. Gen. Virol. 93:194-202. https://doi.org/10.1099/vir.0.033902-0
  69. Yuan, Z., Chen, H., Chen, Q., Omura, T., Xie, L., Wu, Z. and Wei, T. 2011. The early secretory pathway and an actin-myosin VIII motility system are required for plasmodesmatal localization of the NSvc4 protein of Rice stripe virus. Virus Res. 159:62-68. https://doi.org/10.1016/j.virusres.2011.04.023
  70. Zhang, C., Pei, X., Wang, Z., Jia, S., Guo, S., Zhang, Y. and Li, W. 2012. The Rice stripe virus pc4 functions in movement and foliar necrosis expression in Nicotiana benthamiana. Virology 425:113-121. https://doi.org/10.1016/j.virol.2012.01.007
  71. Zhang, C., Song, Y., Jiang, F., Li, G., Jiang, Y., Zhu, C. and Wen, F. 2012. Virus resistance obtained in transgenic tobacco and rice by RNA interference using promoters with distinct activity. Biol. Plantarum 56:742-748. https://doi.org/10.1007/s10535-012-0117-z
  72. Zhang, H. M., Yang, J., Sun, H. R., Xin, X., Wang, H. D., Chen, J. P. and Adams, M. 2007. Genomic analysis of Rice stripe virus Zhejiang isolate shows the presence of an OTU-like domain in the RNA1 protein and a novel sequence motif conserved within the intergenic regions of ambisense segments of tenuiviruses. Arch. Virol. 152:1917-1923. https://doi.org/10.1007/s00705-007-1013-2
  73. Zhang, S., Li, L., Wang, X. and Zhou, G. 2007. Transmission of Rice stripe virus acquired from frozen infected leaves by the small brown planthopper (Laodelphax striatellus Fallen). J. Virol. Methods 146:359-362. https://doi.org/10.1016/j.jviromet.2007.05.028
  74. Zhang, X., Wang, X. and Zhou, G. 2008. A one-step real time RTPCR assay for quantifying Rice stripe virus in rice and in the small brown planthopper (Laodelphax striatellus Fallen). J. Virol. Methods 151:181-187. https://doi.org/10.1016/j.jviromet.2008.05.024
  75. Zhang, Y. X., Wang, Q., Jiang, L., Liu, L. L., Wang, B. X., Shen, Y. Y., Cheng, X. N. and Wan, J. 2011. Fine mapping of qSTV11KAS, a major QTL for rice stripe disease resistance. Theor. Appl. Gen. 122:1591-1604. https://doi.org/10.1007/s00122-011-1557-0
  76. Zhang, Y. X., Wang, Q., Jiang, L., Wang, B. X., Liu, L. L., Shen, Y. Y., Cheng, X. N. and Wan, J. M. 2012. Detection and fine mapping of two quantitative trait loci for partial resistance to stripe virus in rice (Oryza sativa L.). Mol. Breeding 30:1-13. https://doi.org/10.1007/s11032-011-9593-7
  77. Zhao, F., Cai, Z., Hu, T., Yao, H., Wang, L., Dong, N., Wang, B., Ru, Z. and Zhai, W. 2010. Genetic analysis and molecular mapping of a novel gene conferring resistance to Rice stripe virus. Plant Mol. Biol. Rep. 28:512-518. https://doi.org/10.1007/s11105-009-0178-0
  78. Zhao, S., Dai, X., Liang, J. and Liang, C. 2012. Surface display of Rice stripe virus NSvc2 and analysis of its membrane fusion activity. Virol. Sin. 27:100-108. https://doi.org/10.1007/s12250-012-3237-x
  79. Zhao, S., Zhang, G., Dai, X., Hou, Y., Li, M., Liang, J. and Liang, C. 2012. Processing and intracellular localization of Rice stripe virus Pc2 protein in insect cells. Virology 429:148-154. https://doi.org/10.1016/j.virol.2012.04.018
  80. Zhou, Y., Yuan, Y., Yuan, F., Wang, M., Zhong, H., Gu, M. and Liang, G. 2012. RNAi-directed down-regulation of RSV results in increased resistance in rice (Oryza sativa L.). Biotechnol. Lett. 34:965-972. https://doi.org/10.1007/s10529-012-0848-0
  81. Zhu, Y., Hayakawa, T. and Toriyama, S. 1992. Complete nucleotide sequence of RNA 4 of Rice stripe virus isolate T, and comparison with another isolate and with Maize stripe virus. J. Gen. Virol. 73:1309-1312. https://doi.org/10.1099/0022-1317-73-5-1309
  82. Zhu, Y., Hayakawa, T., Toriyama, S. and Takahashi, M. 1991. Complete nucleotide sequence of RNA 3 of Rice stripe virus: an ambisense coding strategy. J. Gen. Virol. 72:763. https://doi.org/10.1099/0022-1317-72-4-763

Cited by

  1. Dimeric artificial microRNAs mediate high resistance to RSV and RBSDV in transgenic rice plants vol.126, pp.1, 2016, https://doi.org/10.1007/s11240-016-0983-8
  2. Interaction study of rice stripe virus proteins reveals a region of the nucleocapsid protein (NP) required for NP self-interaction and nuclear localization vol.183, 2014, https://doi.org/10.1016/j.virusres.2014.01.011
  3. Rice stripe tenuivirus p2 may recruit or manipulate nucleolar functions through an interaction with fibrillarin to promote virus systemic movement vol.16, pp.9, 2015, https://doi.org/10.1111/mpp.12220
  4. Evolution of rice stripe virus vol.109, 2017, https://doi.org/10.1016/j.ympev.2017.02.002
  5. Developments in Plant Negative-Strand RNA Virus Reverse Genetics vol.54, pp.1, 2016, https://doi.org/10.1146/annurev-phyto-080615-095909
  6. Viruliferous rate of small brown planthopper is a good indicator of rice stripe disease epidemics vol.6, pp.1, 2016, https://doi.org/10.1038/srep21376
  7. Model-based structural and functional characterization of the Rice stripe tenuivirus nucleocapsid protein interacting with viral genomic RNA vol.506, 2017, https://doi.org/10.1016/j.virol.2017.03.010
  8. in the rotation between vector insect and host plant vol.219, pp.3, 2018, https://doi.org/10.1111/nph.15246
  9. NS3 Protein from Rice stripe virus affects the expression of endogenous genes in Nicotiana benthamiana vol.15, pp.1, 2018, https://doi.org/10.1186/s12985-018-1014-7
  10. Characterization of Proteins Involved in Chloroplast Targeting Disturbed by Rice Stripe Virus by Novel Protoplast–Chloroplast Proteomics vol.20, pp.2, 2019, https://doi.org/10.3390/ijms20020253