Browse > Article
http://dx.doi.org/10.5423/PPJ.RW.10.2012.0158

Current Insights into Research on Rice stripe virus  

Cho, Won Kyong (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Lian, Sen (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Kim, Sang-Min (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Park, Sang-Ho (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Kim, Kook-Hyung (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Publication Information
The Plant Pathology Journal / v.29, no.3, 2013 , pp. 223-233 More about this Journal
Abstract
Rice stripe virus (RSV) is one of the most destructive viruses of rice, and greatly reduces rice production in China, Japan, and Korea, where mostly japonica cultivars of rice are grown. RSV is transmitted by the small brown plant-hopper (SBPH) in a persistent and circulative-propagative manner. Several methods have been developed for detection of RSV, which is composed of four single-stranded RNAs that encode seven proteins. Genome sequence data and comparative phylogenetic analysis have been used to identify the origin and diversity of RSV isolates. Several rice varieties resistant to RSV have been selected and QTL analysis and fine mapping have been intensively performed to map RSV resistance loci or genes. RSV genes have been used to generate several genetically modified transgenic rice plants with RSV resistance. Recently, genome-wide transcriptome analyses and deep sequencing have been used to identify mRNAs and small RNAs involved in RSV infection; several rice host factors that interact with RSV proteins have also been identified. In this article, we review the current statues of RSV research and propose integrated approaches for the study of interactions among RSV, rice, and the SBPH.
Keywords
genome; quantitative trait locus; resistance; rice; Rice stripe virus;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ding, X. L., Jiang, L., Wang, C. M., CHen, L. M., Cheng, Z. B., Fan, Y. J., Zhou, Y. J. and Wan, J. M. 2004. QTL analysis for rice stripe disease resistance gene using recombinant inbred lines (RILs) derived from crossing of Kinmaze and DV85. J. Gen. Genom. 31:287-292.
2 Du, P., Wu, J., Zhang, J., Zhao, S., Zheng, H., Gao, G., Wei, L. and Li, Y. 2011. Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors. PLoS Pathog. 7:e1002176.   DOI
3 Du, Z., Xiao, D., Wu, J., Jia, D., Yuan, Z., Liu, Y., Hu, L., Han, Z., Wei, T., Lin, Q., Wu, Z. and Xie, L. 2011. p2 of Rice stripe virus (RSV) interacts with OsSGS3 and is a silencing suppressor. Mol. Plant Pathol. 12:808-814.   DOI   ScienceOn
4 Falk, B. W. and Tsai, J. H. 1998. Biology and molecular biology of viruses in the genus Tenuivirus. Annu. Rev. Phytopathol. 36:139-163.   DOI   ScienceOn
5 Hamamatsu, C., Toriyama, S., Toyoda, T. and Ishihama, A. 1993. Ambisense coding strategy of the Rice stripe virus genome: in vitro translation studies. J. Gen. Virol. 74:1125.   DOI   ScienceOn
6 Hao, Z., Wang, L., He, Y., Liang, J. and Tao, R. 2011. Expression of defense genes and activities of antioxidant enzymes in rice resistance to Rice stripe virus and small brown planthopper. Plant Physiol. Biochem. 49:744-751.   DOI   ScienceOn
7 Hayakawa, T., Zhu, Y., Itoh, K., Kimura, Y., Izawa, T., Shimamoto, K. and Toriyama, S. 1992. Genetically engineered rice resistant to Rice stripe virus, an insect-transmitted virus. Proc. Natl. Acad. Sci. 89:9865.   DOI   ScienceOn
8 Hayano-Saito, Y., Saito, K., Nakamura, S., Kawasaki, S. and Iwasaki, M. 2000. Fine physical mapping of the rice stripe resistance gene locus, Stvb-i. Theor. Appl. Genet. 101:59-63.   DOI   ScienceOn
9 Li, S., Xiong, R., Wang, X. and Zhou, Y. 2011. Five proteins of Laodelphax striatellus are potentially involved in the interactions between Rice stripe virus and vector. PLoS One 6:e26585.   DOI
10 Lian, S., Jonson, M. G., Cho, W. K., Choi, H. S., Je, Y. H. and Kim, K. H. 2011. Generation of antibodies against Rice stripe virus proteins based on recombinant proteins and synthetic polypeptides. Plant Pathol. J. 27:37-43.   과학기술학회마을   DOI   ScienceOn
11 Liang, D., Ma, X., Qu, Z. and Hull, R. 2005. Nucleic acid binding property of the gene products of Rice stripe virus. Virus Genes 31:203-209.   DOI
12 Liang, D., Qu, Z., Ma, X. and Hull, R. 2005. Detection and localization of Rice stripe virus gene products in vivo. Virus Genes 31:211-221.   DOI   ScienceOn
13 Lu, L., Du, Z., Qin, M., Wang, P., Lan, H., Niu, X., Jia, D., Xie, L. and Lin, Q. 2009. Pc4, a putative movement protein of Rice stripe virus, interacts with a type I DnaJ protein and a small Hsp of rice. Virus Genes 38:320-327.   DOI
14 Ma, J., Song, Y., Wu, B., Jiang, M., Li, K., Zhu, C. and Wen, F. 2011. Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference. Transgenic Res. 20:1367-1377.   DOI   ScienceOn
15 Maeda, H., Matsushita, K., Iida, S. and Sunohara, Y. 2006. Characterization of two QTLs controlling resistance to Rice stripe virus detected in a Japanese upland rice line, Kanto 72. Breeding Sci. 56:359-364.   DOI   ScienceOn
16 McCough, S. R. and Doerge, R. W. 1995. QTL mapping in rice. Trends Genet. 11:482-487.   DOI   ScienceOn
17 Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:e63-e63.   DOI
18 Pan, X., Liang, G., Chen, Z. and Zhang, Y. 2005. Breeding strategy on resistance to rice stripe in Jiangsu. Jiangsu Agr. Sci. 5:22-23.
19 Nuruzzaman, M., Manimekalai, R., Sharoni, A. M., Satoh, K., Kondoh, H., Ooka, H. and Kikuchi, S. 2010. Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30-44.   DOI   ScienceOn
20 Otuka, A., Matsumura, M., Sanada-Morimura, S., Takeuchi, H., Watanabe, T., Ohtsu, R. and Inoue, H. 2010. The 2008 overseas mass migration of the small brown planthopper, Laodelphax striatellus, and subsequent outbreak of rice stripe disease in western Japan. Appl. Entomol. Zoo. 45:259-266.   DOI   ScienceOn
21 Pan, X. B., Chen, Z. X., Zuo, S. M., Zhang, Y. F., Wu, X. J., Ma, N., Jiang, Q. X., Que, J. H. and Zhou, C. H. 2009. A new rice cultivar Wulingjing 1 resistant to Rice stripe virus developed by marker assisted selection. Acta Agron. Sin. 35:1851-1857.
22 Park, H. M., Choi, M. S., Kwak, D. Y., Lee, B. C., Lee, J. H., Kim, M. K., Kim, Y. G., Shin, D. B., Park, S. K. and Kim, Y. H. 2012. Suppression of NS3 and MP is important for the stable inheritance of RNAi-mediated Rice stripe virus (RSV) resistance obtained by targeting the fully complementary RSV-CP gene. Mol. Cells 33:1-9.   DOI
23 Satoh, K., Kondoh, H., Sasaya, T., Shimizu, T., Choi, I. R., Omura, T. and Kikuchi, S. 2010. Selective modification of rice (Oryza sativa) gene expression by Rice stripe virus infection. J. Gen. Virol. 91:294-305.   DOI   ScienceOn
24 Sharoni, A. M., Nuruzzaman, M., Satoh, K., Shimizu, T., Kondoh, H., Sasaya, T., Choi, I. R., Omura, T. and Kikuchi, S. 2011. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol. 52:344-360.   DOI   ScienceOn
25 Shen, M., Xu, Y., Jia, R., Zhou, X. and Ye, K. 2010. Size-independent and noncooperative recognition of dsRNA by the Rice stripe virus RNA silencing suppressor NS3. J. Mol. Biol. 404:665.   DOI   ScienceOn
26 Wang, Y., Xue, Y. and Li, J. 2005. Towards molecular breeding and improvement of rice in China. Trends Plant Sci. 10:610-614.   DOI   ScienceOn
27 Toriyama, S., Takahashi, M., Sano, Y., Shimizu, T. and Ishihama, A. 1994. Nucleotide sequence of RNA 1, the largest genomic segment of Rice stripe virus, the prototype of the tenuiviruses. J. Gen. Virol. 75:3569.   DOI   ScienceOn
28 Wang, B., Jiang, L., Zhang, Y., Zhang, W., Wang, Q., Liu, S., Liu, Y., Cheng, X., Zhai, H. and Wan, J. 2011. Genetic dissection of the resistance to Rice stripe virus present in the indica rice cultivar ‘IR24’. Genome 54:611-619.   DOI   ScienceOn
29 Wang, H. D., Chen, J. P., Zhang, H. M., Sun, X. L., Zhu, J. L., Wang, A. G., Sheng, W. X. and Adams, M. 2008. Recent Rice stripe virus epidemics in Zhejiang province, China, and experiments on sowing date, disease-yield loss relationships, and seedling susceptibility. Plant Dis. 92:1190-1196.   DOI   ScienceOn
30 Washio, O., Ezuka, A., Toriyama, K. and Sakurai, Y. 1968. Studies on the breeding of rice varieties resistant to stripe disease II. Genetic study on resistance to stripe disease in Japanese upland rice. Jpn. J. Breed 18:96-101.   DOI
31 Washio, O., Ezuka, A., Toriyama, K. and Sakurai, Y. 1968. Studies on the breeding of rice varieties resistant to stripe disease III. Genetic studies on resistance to stripe disease in foreign varieties. Jpn. J. Breed 18:167-172.   DOI
32 Wei, T. Y., Yang, J. G., Liao, F. L., Gao, F. L., Lu, L. M., Zhang, X. T., Li, F., Wu, Z. J., Lin, Q. Y. and Xie, L. H. 2009. Genetic diversity and population structure of Rice stripe virus in China. J. Gen. Virol. 90:1025.   DOI   ScienceOn
33 Wu, S. J., Zhong, H., Zhou, Y., Zuo, H., Zhou, L. H., Zhu, J. Y., Ji, C. Q., Gu, S. L., Gu, M. H. and Liang, G. H. 2009. Identification of QTLs for the resistance to Rice stripe virus in the indica rice variety Dular. Euphytica 165:557-565.   DOI   ScienceOn
34 Zhang, X., Wang, X. and Zhou, G. 2008. A one-step real time RTPCR assay for quantifying Rice stripe virus in rice and in the small brown planthopper (Laodelphax striatellus Fallen). J. Virol. Methods 151:181-187.   DOI   ScienceOn
35 Zhang, C., Song, Y., Jiang, F., Li, G., Jiang, Y., Zhu, C. and Wen, F. 2012. Virus resistance obtained in transgenic tobacco and rice by RNA interference using promoters with distinct activity. Biol. Plantarum 56:742-748.   DOI
36 Zhang, H. M., Yang, J., Sun, H. R., Xin, X., Wang, H. D., Chen, J. P. and Adams, M. 2007. Genomic analysis of Rice stripe virus Zhejiang isolate shows the presence of an OTU-like domain in the RNA1 protein and a novel sequence motif conserved within the intergenic regions of ambisense segments of tenuiviruses. Arch. Virol. 152:1917-1923.   DOI   ScienceOn
37 Zhang, S., Li, L., Wang, X. and Zhou, G. 2007. Transmission of Rice stripe virus acquired from frozen infected leaves by the small brown planthopper (Laodelphax striatellus Fallen). J. Virol. Methods 146:359-362.   DOI   ScienceOn
38 Zhang, Y. X., Wang, Q., Jiang, L., Liu, L. L., Wang, B. X., Shen, Y. Y., Cheng, X. N. and Wan, J. 2011. Fine mapping of qSTV11KAS, a major QTL for rice stripe disease resistance. Theor. Appl. Gen. 122:1591-1604.   DOI   ScienceOn
39 Zhang, Y. X., Wang, Q., Jiang, L., Wang, B. X., Liu, L. L., Shen, Y. Y., Cheng, X. N. and Wan, J. M. 2012. Detection and fine mapping of two quantitative trait loci for partial resistance to stripe virus in rice (Oryza sativa L.). Mol. Breeding 30:1-13.   DOI
40 Zhao, F., Cai, Z., Hu, T., Yao, H., Wang, L., Dong, N., Wang, B., Ru, Z. and Zhai, W. 2010. Genetic analysis and molecular mapping of a novel gene conferring resistance to Rice stripe virus. Plant Mol. Biol. Rep. 28:512-518.   DOI   ScienceOn
41 Zhao, S., Dai, X., Liang, J. and Liang, C. 2012. Surface display of Rice stripe virus NSvc2 and analysis of its membrane fusion activity. Virol. Sin. 27:100-108.   DOI   ScienceOn
42 Zhu, Y., Hayakawa, T., Toriyama, S. and Takahashi, M. 1991. Complete nucleotide sequence of RNA 3 of Rice stripe virus: an ambisense coding strategy. J. Gen. Virol. 72:763.   DOI   ScienceOn
43 Zhao, S., Zhang, G., Dai, X., Hou, Y., Li, M., Liang, J. and Liang, C. 2012. Processing and intracellular localization of Rice stripe virus Pc2 protein in insect cells. Virology 429:148-154.   DOI   ScienceOn
44 Zhou, Y., Yuan, Y., Yuan, F., Wang, M., Zhong, H., Gu, M. and Liang, G. 2012. RNAi-directed down-regulation of RSV results in increased resistance in rice (Oryza sativa L.). Biotechnol. Lett. 34:965-972.   DOI   ScienceOn
45 Zhu, Y., Hayakawa, T. and Toriyama, S. 1992. Complete nucleotide sequence of RNA 4 of Rice stripe virus isolate T, and comparison with another isolate and with Maize stripe virus. J. Gen. Virol. 73:1309-1312.   DOI   ScienceOn
46 Cheng, E. and Mir, M. A. 2012. Signatures of host mRNA 5' terminus for efficient Hantavirus cap snatching. J. Virol. 86: 10173-10185.   DOI
47 Abo, M. E. and Sy, A. A. 1997. Rice virus diseases: epidemiology and management strategies. J. Sustain. Agr. 11:113-134.   DOI   ScienceOn
48 Barbier, P., Takahashi, M., Nakamura, I., Toriyama, S. and Ishihama, A. 1992. Solubilization and promoter analysis of RNA polymerase from Rice stripe virus. J. Virol. 66:6171-6174.
49 Cai, L., Ma, X., Lin, K., Deng, K., Zhao, S. and Li, C. 2003. Detecting Rice stripe virus (RSV) in the small brown planthopper Laodelphax striatellus with high specificity by RT-PCR. J. Virol. Methods 112:115-120.   DOI   ScienceOn
50 Dias, A., Bouvier, D., Crepin, T., McCarthy, A. A., Hart, D. J., Baudin, F., Cusack, S. and Ruigrok, R. W. H. 2009. The capsnatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458:914-918.   DOI   ScienceOn
51 Ise, K., Ishikawa, K., Li, C. and Ye, C. 2002. Inheritance of resistance to Rice stripe virus in rice line 'BL 1'. Euphytica 127:185-191.   DOI   ScienceOn
52 Hayano-Saito, Y., Tsuji, T., Fujii, K., Saito, K., Iwasaki, M. and Saito, A. 1998. Localization of the rice stripe disease resistance gene, Stv-bi, by graphical genotyping and linkage analyses with molecular markers. Theor. Appl. Genet. 96:1044-1049.   DOI   ScienceOn
53 Hayano, Y., Kakutani, T., Hayashi, T. and Minobe, Y. 1990. Coding strategy of Rice stripe virus: major nonstructural protein is encoded in viral RNA segment 4 and coat protein in RNA complementary to segment 3. Virology 177:372-374.   DOI   ScienceOn
54 Hibino, H. 1996. Biology and epidemiology of rice viruses. Annu. Rev. Phytopathol. 34:249-274.   DOI   ScienceOn
55 Ishikawa, K., Omura, T. and Hibino, H. 1989. Morphological characteristics of Rice stripe virus. J. Gen. Virol. 70:3465-3468.   DOI
56 Jiang, L., Qian, D., Zheng, H., Meng, L. Y., Chen, J., Le, W. J., Zhou, T., Zhou, Y. J., Wei, C. H. and Li, Y. 2012. RNA-dependent RNA polymerase 6 of rice (Oryza sativa) plays role in host defense against negative-strand RNA virus, Rice stripe virus. Virus Res. 163:512-519.   DOI   ScienceOn
57 Jonson, M. G., Choi, H. S., Kim, J. S., Choi, I. R. and Kim, K. H. 2009. Complete genome sequence of the RNAs 3 and 4 segments of Rice stripe virus isolates in Korea and their phylogenetic relationships with Japan and China isolates. Plant Pathol. J. 25:142-150.   과학기술학회마을   DOI   ScienceOn
58 Jonson, M. G., Choi, H. S., Kim, J. S., Choi, I. R. and Kim, K. H. 2009. Sequence and phylogenetic analysis of the RNA1 and RNA2 segments of Korean Rice stripe virus isolates and comparison with those of China and Japan. Arch. Virol. 154:1705-1708.   DOI   ScienceOn
59 Kakutani, T., Hayano, Y., Hayashi, T. and Minobe, Y. 1991. Ambisense segment 3 of Rice stripe virus: the first instance of a virus containing two ambisense segments. J. Gen. Virol. 72:465-468.   DOI   ScienceOn
60 Kakutani, T., Hayano, Y., Hayashi, T. and Minobe, Y. 1990. Ambisense segment 4 of Rice stripe virus: possible evolutionary relationship with phleboviruses and uukuviruses (Bunyaviridae). J. Gen Virol. 71:1427-1432.   DOI   ScienceOn
61 Kim, K., Choi, D., Kim, S. M., Kwak, D. Y., Choi, J., Lee, S., Lee, B. C., Hwang, D. and Hwang, I. 2012. A systems approach for identifying resistance factors to Rice stripe virus. Mol. Plant Microbe. Interact. 25:534-545.   DOI   ScienceOn
62 Kisimoto, R. 1967. Genetic variation in the ability of a planthopper vector; Laodelphax striatellus (Fallen) to acquire the Rice stripe virus. Virology 32:144-152.   DOI   ScienceOn
63 Kwon, T., Lee, J. H., Park, S. K., Hwang, U. H., Cho, J. H., Kwak, D. Y., Youn, Y. N., Yeo, U. S., Song, Y. C. and Nam, J. 2012. Fine mapping and identification of candidate rice genes associated with qSTV11SG, a major QTL for rice stripe disease resistance. Theor. Appl. Genet. 125:1-14.   DOI   ScienceOn
64 Le, D. T., Netsu, O., Uehara-Ichiki, T., Shimizu, T., Choi, I. R., Omura, T. and Sasaya, T. 2010. Molecular detection of nine rice viruses by a reverse-transcription loop-mediated isothermal amplification assay. J. Virol. Methods 170:90-93.   DOI   ScienceOn
65 Lee, B. C., Yoon, Y. N., Hong, S. J., Hong, Y. K., Kwak, D. Y., Lee, J. H., Yae, U. S., Kang, H. W. and Hwang, H. G. 2008. Analysis on the occurrence of Rice stripe virus. Res. Plant Dis. 14:210-213.   과학기술학회마을   DOI   ScienceOn
66 Li, S., Li, X., Sun, L. and Zhou, Y. 2012. Analysis of Rice stripe virus whole-gene expression in rice and in the small brown planthopper by real-time quantitative PCR. Acta Virol. 56:75-79.   DOI
67 Suzuki, Y., Fuji, S., Takahashi, Y. and Kojima, M. 1992. Immunogold localization of Rice stripe virus particle antigen in thin sections of insect host cells. Ann. Phytopathol. Soc. Jpn. 58:480-480.   DOI
68 Shimizu, T., Nakazono-Nagaoka, E., Uehara-Ichiki, T., Sasaya, T. and Omura, T. 2011. Targeting specific genes for RNA interference is crucial to the development of strong resistance to Rice stripe virus. Plant Biotechnol. J. 9:503-512.   DOI   ScienceOn
69 Shimizu, T., Toriyama, S., Takahashi, M., Akutsu, K. and Yoneyama, K. 1996. Non-viral sequences at the 5 termini of mRNAs derived from virus-sense and virus-complementary sequences of the ambisense RNA segments of Rice stripe tenuivirus. J. Gen. Virol. 77:541-546.   DOI   ScienceOn
70 Sun, F., Yuan, X., Zhou, T., Fan, Y. and Zhou, Y. 2011. Arabidopsis is Susceptible to Rice stripe virus Infections. J. Phytopathol. 159:767-772.   DOI   ScienceOn
71 Takahashi, M., Goto, C., Ishikawa, K., Matsuda, I., Toriyama, S. and Tsuchiya, K. 2003. Rice stripe virus 23.9 K protein aggregates and forms inclusion bodies in cultured insect cells and virus-infected plant cells. Arch. Virol. 148:2167-2179.   DOI
72 Takahashi, M., Toriyama, S., Hamamatsu, C. and Ishihama, A. 1993. Nucleotide sequence and possible ambisense coding strategy of Rice stripe virus RNA segment 2. J. Gen. Virol. 74:769-773.   DOI   ScienceOn
73 Takahashi, M., Toriyama, S., Kikuchi, Y., Hayakawa, T. and Ishihama, A. 1990. Complementarity between the 5'-and 3'-terminal sequences of Rice stripe virus RNAs. J. Gen. Virol. 71:2817-2821.   DOI   ScienceOn
74 Takahashi, Y., Omura, T., Shohara, K. and Tsuchizaki, T. 1991. Comparison of four serological methods for practical detection of ten viruses of rice in plants and insects. Plant Dis. 75:458-461.   DOI
75 Yan, F., Zhang, H., Adams, M. J., Yang, J., Peng, J., Antoniw, J. F., Zhou, Y. and Chen, J. 2010. Characterization of siRNAs derived from Rice stripe virus in infected rice plants by deep sequencing. Arch. Virol. 155:935-940.   DOI
76 Wu, X., Zuo, S., Chen, Z., Zhang, Y., Zhu, J., Ma, N., Tang, J., Chu, C. and Pan, X. 2011. Fine mapping of qSTV11TQ, a major gene conferring resistance to rice stripe disease. Theor. Appl. Genet. 122:915-923.   DOI   ScienceOn
77 Xiong, R., Wu, J., Zhou, Y. and Zhou, X. 2008. Identification of a movement protein of the tenuivirus Rice stripe virus. J. Virol. 82:12304-12311.   DOI   ScienceOn
78 Xiong, R., Wu, J., Zhou, Y. and Zhou, X. 2009. Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virology 387:29-40.   DOI   ScienceOn
79 Yang, J. G., Wang, W. T., Ding, X. L., Guo, L. J., Fang, Z. X., Xie, L. Y., Lin, Q. Y., Wu, Z. J. and Xie, L. H. 2010. Auxin regulation in the interaction between Rice stripe virus and rice. Chinese J. Agr. Biotechnol. 6:27.
80 Yao, M., Zhang, T., Zhou, T., Zhou, Y., Zhou, X. and Tao, X. 2012. Repetitive prime-and-realign mechanism converts short capped RNA leaders into longer ones that may be more suitable for elongation during Rice stripe virus transcription initiation. J. Gen. Virol. 93:194-202.   DOI   ScienceOn
81 Yuan, Z., Chen, H., Chen, Q., Omura, T., Xie, L., Wu, Z. and Wei, T. 2011. The early secretory pathway and an actin-myosin VIII motility system are required for plasmodesmatal localization of the NSvc4 protein of Rice stripe virus. Virus Res. 159:62-68.   DOI   ScienceOn
82 Zhang, C., Pei, X., Wang, Z., Jia, S., Guo, S., Zhang, Y. and Li, W. 2012. The Rice stripe virus pc4 functions in movement and foliar necrosis expression in Nicotiana benthamiana. Virology 425:113-121.   DOI   ScienceOn