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Abstract

Reactive oxygen and nitrogen species (ROS and RNS, respectively) are messengers that carry signals to alter the redox state in order to activate
plant responses and other physiological processes, such as differentiation, aging, senescence, and pathogen defense. Quite a large number of genes
are involved in this signaling and lead to oxidative stress in plants. Although the role of ROS/RNS during stress conditions is well documented,
a comprehensive list of genes and comparative study of these genes has not yet been completed. Accordingly, the in sifico identification of oxidative
stress-related genes was performed for soybeans and Arabidopsis. These genes were also studied in relation to multiple domain prediction. The presence
of domains like dehydogenase and ATPase suggests that these genes are involved in various metabolic processes, as well as the transportation of
ions under optimal environmental conditions. In addition to a sequence analysis, a phylogenetic analysis was also performed to identify orthologous
pairs among the soybean and Arabidopsis oxidative stress-related genes based on neighbor joining. This study was also conducted with the objective
of further understanding the complex molecular signaling mechanism in plants under various stress conditions.
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Introduction

Plants have sophisticated systems that respond to fluctuations
in their environment. Consequences of plant response to adverse
environments (biotic and abiotic stresses) are enhancement of
ROS/RNS and antioxidant defense, leading to physiological and
metabolic changes. An imbalance due to ROS and RNS disturbs
the normalredoxstate of cells and modulates the cellular
metabolism (Gechev 2006). Traditionally, ROS were considered
to be toxic due to the production of peroxides and free radicals,
which damage all the cell components, including proteins, lipids,
and DNA (Mittler 2002). However, in recent years, it has become
evident that increased ROS production is also associated with
plant defense responses. ROS act as signaling molecules to
mediate cellular processes, such as programmed cell death
(Harding et al. 2003), abiotic stress responses (Madhava and
Sresty 2000), pathogen defense (Torres et al. 2005), and systemic
signaling (Suzuki et al. 2011). Yet, while ROS can be used
by plants for cellular homeostasis to monitor their intracellular
level of stress, this level has to be kept under tight regulation
as over-accumulation of ROS can result in cell death.
Nitric oxide (NO) is already known to serve an important
function in various physiological processes, ranging from seed
germination (Beligni and Lamattina 2000; Bethke et al. 2007),

regulation of plant maturation and senescence (Guo and
Crawford 2005), suppression of floral transition (He et al. 2004),
and involvement in light-mediated greening (Zhang et al. 2006),
to mediation of stomatal movement as an intermediate
downstream of ABA signaling (Bright et al. 2006; Garcia-Mata
and Lamattina 2007) and regulation of multiple plant responses
toward a variety of abiotic and biotic stresses, such as drought
(Garcia-Mata and Lamattina 2001), salt (Zhao et al. 2004), heat
(Uchida et al. 2002), and disease infection (Delledonne et al.
2005). Yet, an enhanced NO concentration can cause inhibition
of shoot and root development, potential damage to
photosynthetic electron transport, DNA damage and cell death
(Yun et al. 2011).

One of the mechanisms contributing to oxidative signal induced
stress and pathogen tolerance is the activation of a detoxification
process and defense gene expression. For example, Arabidopsis
plants respond to oxidative stress with an increase in production
of antioxidant enzymes, including glutathione- S-transferases
(GSTs), peroxidases, superoxide dismutases, and catalases, as
well as the activation of protective genes encoding heat shock
proteins (HSPs) and pathogenesis-related proteins.
Comparative genomics can be used to gain knowledge of gene
organization, and is particularly helpful in examining genome
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evolution (Keller and Feuillet 2000; Ellwood et al.2008). Closely
related species have extensive regions of gene co-linearity, a
phenomenon also known as synteny (Zang et al. 2009), however,
as the evolutionary distance between two species increases, the
segments of co-linearity become shorter.

The recent availability of complete genomes of several model
systems has sparked renewed interest in the study of co-linearity
due to the potential of transferring useful information from
well-studied small genomes to larger ones (Rubin et al. 2000).
Conservation of the structure and function of genetic loci among
species has already been documented, even though genome sizes
in plant species exhibit large variations, e.g., 125 Mb for A
thaliana to 125 Gb for Fritillaria assyriaca (Bennett and Smith
1976). Extensive gene conservation, both in structure and
function, has also been reported in grass genomes (Bennetzen
and Ramakrishna 2002), Crucifers (Axelsson 2001), and
solanaceous plants (Causse 2007). Plus, comparative genomics
is widely used in crops to study various traits (yield, disease
resistance etc.). Agalou et al. (2008) predicted 33 drought-
responsive genes of the HD-ZIP family in rice by exploiting
comparative genomics with Arabidopsis. Therefore, these
studies suggest that a comparative analysis of oxidative
stress-related genes is a suitable strategy to investigate the
molecular basis of plant responses to the disruption of cellular
homeostasis in different plant species.

Accordingly, the present study conducted a comprehensive
analysis of the oxidative stress-related genes in Arabidopsis
and soybeans due to the availability of their genome sequences
and several EST and cDNA collections. Moreover, there have
already been several reports on stress-related genes in
Arabidopsis (Mahantesha et al. 2013 Subhomoi et al. 2013),
which can serve as a basis for the manual screening of the
Arabidopsis database and also be utilized for soybeans. Soybeans
are a major oil crop worldwide and extensively grown around
the city of Daegu and in Gyeongbuk Province, South Korea
with the land under soybean cultivation being 14,563 ha
(Statistics Korea, http://kostat.go.kr/dbro).

This study was carried out with following goals: firstly,
identification of oxidative stress-related genes in Arabidopsis,
and secondly, their orthologs in soybeans for a comparative
genomics approach to exploit candidate genetic traits.

Materials and Methods
Retrieval of genes sequences

The genes involved in oxidative stress were retrieved from the
Arabidopsis database (TAIR, http://www.arabidopsis.org/) by
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referring to the comprehensive stress gene catalog provided by
Mahanteshaet al.(2013) Subhomoi et al. (2013). The selected
genes included all the oxidative stress-related genes available
in the TAIR website. The protein sequences of these genes
were then used as a query against the soybean database (SoyBase
and the Soybean Breeder’s Toolbox, http://soybase.org/
GlycineBlastPages/). Next, the protein function domains of the
identified oxidative stress-related genes were examined based
onHidden Markov Model (HMM) searches of the conserved
domain databases (CDD) of NCBI (NCBI, http://www.ncbi.
nlm.nih.gov/Structure/cdd/cdd.shtml). Gene models for the
soybean genomes were downloaded from Phytozome (Phytozome,
http://www.phytozome.net/). The Arabidopsis gene models were
downloaded from TAIR (TAIR, http://www.arabidopsis.org/).

Phylogenetic analysis:

The sequence identities among the soybean and Arabidopsis
genes were confirmed using ClustalW in Mega 6. The
phylogenetic and molecular evolutionary analyses were
conducted using MEGA version 6 (Tamura et al. 2013). The
phylogenetic trees were constructed using the neighbor-joining
method, including 1000 replications for a bootstrap analysis
to generate a dendrogram.

Results

Manual screening of the Arabidopsis genome using previously
identified domains was conducted to predict the oxidative
stress-related genes. As a result, a total of 252 genes responsible
for oxidative stress were identified in the Arabidopsis genome.
Plus, all these genes were subjected to a domain analysis in
CDD. Therefore, these proteins were used as query sequences
to identify the oxidative stress-related genes in the soybean
database using a BLAST (Altschul et al. 1990) search. Sequences
with a high score, >50% identity and e-value >1°°, were then
selected from the soybean database, resulting in 396 gene
matches that represented potential oxidative stress-related genes
in soybeans.

These genes were further confirmed as oxidative stress-related
genes using a conserved domain analysis. Oxidative stress-
related genes are highly diverse and mainly include peroxidase,
thirodoxin, b-ZIP, Zf-CH, tranferases, kinases, ATPases, Zinc
fingers, and LRR domains. A detailed description of the
oxidative stress-related genes with the corresponding domain
is given on the author’s webpage (http://pfg.knu.ac.ky/
publish/oxi.pdf). Some of the domains predicted in oxidative
stress-related genes indicate their involvement in metabolic
processes under favorable and stable environments.
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Overexpression of these genes is an indication of oxidative
stress. As a result, 108 genes in Arabidopsis and 175 genes
in soybeanswere predicted to encode a peroxidase domain, while
40 genes in Arabidopsis and 64 genes in soybeans were predicted
to encode a thioredoxin domain (Table 1).

To identify the phylogenetic relationship between the genes,
a multiple alignment analysis was performed using the amino
acid sequences. The alignment indicated conserved residues for
the corresponding domains (Figure 1). Based on these

observations, a phylogenetic alignment was then constructed
for Arabidopsis and Soybeans. As shown in Figure 2, the
phylogram distinguished 5 groups, namely A to E. The
peroxidase domain-harboring oxidative stress-related genes
were grouped in clad A. The NJ tree showed that the oxidative
stress-related genes in group A could be further divided into
3 subgroups, referred to as 1, 2, and 3. Groups B and C were
also divided into two subgroups. The genes in group B
corresponded to the thioredoxin domain. Meanwhile, the genes

Table 1. Identified oxidative stress-related genes with their corresponding domains

Protein motif in oxidative stress-related genes

Number of genes harboring corresponding motifs

Arabidopsis Soybean
Peroxidase 108 175
Thioredoxin 44 64
Kinases 18
Glutathione S-transferase family 3
Leucine Rich Repeats 1
Hydrolase 4 6
Reductase 12 6
Aldehyde dehydrogenase 4 2
The Basic Leucine Zipper 8
Zinc Finger 13 7
ATPases Associated with diverse cellular Activities 9 13
Glutamine Synthetase 23
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Figure 2. Phylogenetic analysis (A-H).
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The sequences determined were aligned using MEGA program version 6.0 with

grouping based on NJ method using p-distance matrix for nucleotides, with pairwise gap deletion option adopted with 1000

bootstrap repetitions.
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in clads C and D corresponded to multiple domains and were
further divided into 3 subgroups. Clad E also harbored a kinase,
as well as other ion-specific domains with a further 2 subgroups.
All clads have included both soybean and Arabidopsis genes.
The higher number of groups and multiple subgroups suggested
a higher level of diversity among the oxidative stress-related
genes.

Discussion

The adaptation mechanisms of plants to adverse and extreme
environment fluctuation are of major interest to plant biologists
as regards growth and yield. Uncommon stresses such as
drought, salt, cold, pathogen etc. have a common feature in
plants: the generation of oxidative stress and a change in the
cellular redox potential referred to as an oxidative burst.
However, the molecular basis for an oxidative burst in plants
is still poorly understood. The availability of full-length genome
databases has now facilitated the utilization of comparative
genomics in plants, and since the Arabidopsis oxidative stress
responsive dataset includes 252 genes, this provides a basis
for comparative genomics in plant stress physiology. These
genes were exploited for identification of oxidative stress genes
in soybean. The response of different plants to similar stress
conditions includes similar proteins. Agalou et al. (2008)
previously identified homeodomain leucine zipper (HD-Zip)
genes in rice using Arabidopsis HD-Zip gene information. Thus,
the HD-Zip family plays a common role in both plants as a
drought responsive family.

As a first line of plant defense, the induction of a common
set of stress proteins is the molecular basis for both tolerance
and stress hardening. After the initial stress, these proteins
remain active/elevated for a time period that varies depending
on the species, cell-type, history of prior stress exposure,
gene-environment interactions during development, and stress
severity(Kultz 2005). Virtually every gene response to stress
is also affected by modulation of the redox state or the free
radical levels (Asada 2006). Thus, a number of different domain
carrying genes are involved in oxidative stress, unlike other
diseases (e.g. NBS domain) and particular stress responsive
genes (Miller et al. 2010). The current phylogenetic analysis
of the predicted dataset for Arabidopsis and soybeans showed
quite diverse oxidative stress-related genes with 5 groups that
were further sub-grouped depending on various motifs and other
conserved sequences.

Alteration of the cellular redox potential is a major trigger for
the stress response in plants. During different types of stress,
cellular oxidases, such as the plasma membrane NADPH
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oxidase, are rapidly activated, which may explain the increased
ROS levels (Miller et al. 2009). All cells have various antioxidant
enzymes to minimize and repair oxidative damage. Many
oxidoreductases present in the minimal stress protecome are
dehydrogenases, some of which are elements of basic metabolic
pathways; including glycolysis, the pentose phosphate cycle,
and Krebs cycle, making them essential even in the absence
of stress. However, these dehydrogenases also influence the
cellular redox potential and oxidative damage repair by
generating reducing equivalents for antioxidant enzymes that
depend on NADPH as a cofactor, including thioredoxin
reductase, glutathione reductase, and aldehyde reductase.
Aldehyde dehydrogenase and aldehyde reductase are important
for the detoxification of aldehydes, which are common toxic
intermediary metabolites during oxidative stress. The current
study identified thirodoxin, several peroxidases, oxido-
reductases, dehydrogenases, and transferases, and a few
transcription factors with a DNA binding domain.
Oxidative stress is the execution of a complex signaling
mechanism that forces the destruction of the affected part of
the plant to protect the survival of the healthy part. The oxidative
gene dataset identified in the present study will help in
understanding and manipulating the response of plants to biotic
and abiotic stresses. Moreover, this strategy will provide an
edge for inferring the molecular basis of stress specificity in
different plants over traditional costly and time-consuming
techniques.
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