• Title/Summary/Keyword: compaction production

Search Result 57, Processing Time 0.021 seconds

A study on the efficacy of low viscous nanosized biopolymer on the mechanical and hydraulic properties of organic silt

  • Govindarajan Kannan;Evangelin Ramani Sujatha
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.221-231
    • /
    • 2023
  • Biopolymer stabilization is a sustainable alternative to traditional techniques that cause a lesser negative impact on the environment during production and application. The study aims to minimize the biopolymer dosages by sizing the bio-additives to the nanoscale. This study combines the advantages of bio and nanomaterials in geotechnical engineering applications and attempts to investigate the behaviour of a low viscous biopolymer, nano sodium carboxymethyl cellulose (nCMC), to treat organic soil. Soil is treated with 0.25%, 0.50%, 0.75% and 1.00% of nano-bio additive, and its effect on the plastic behaviour, compaction characteristics, strength, hydraulic conductivity (HC) and compressible nature are investigated. The strength increased by 1.68 times after 90 days of curing at a dosage of 0.5% nCMC through the formation of gel threads connecting the soil particles that stiffened the matrix. The viscosity of 1% nCMC increased exponentially, deterring fluid flow through the voids and reduced the HC by 0.85 times after curing for 90 days. Also, beyond the optimum dosage of 0.50%, the nCMC forms a film around the soil particles that inhibits the inter-particle cohesion causing a reduction in strength. Experimental results show that nCMC can effectively substitute conventional additives to stabilize the soil.

Evaluation of Dynamic Modulus based on Aged Asphalt Binder (아스팔트 바인더의 노화특성을 고려한 동탄성계수 평가)

  • Lee, Kwan-Ho;Cho, Kyung-Rae;Lee, Byung-Sik;Song, Yong-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.51-58
    • /
    • 2008
  • Development of a new design guide which is based on empirical-mechanistic concept for pavement design is in action. It is called AASHTO 2002 Design Guide in USA and the KPRP(Korean Pavement Research Project) in Korea. The material characteristic of hot mix asphalt is a key role in the design guide. Therefore it is urgent to get a proper materials database, especially the dynamic modulus of hot mix asphalt. In this research, dynamic modulus test, which is based on aged asphalt binder, has been carried out and proposed the predicted equation of dynamic modulus. Nine different hot mix asphalt with three different asphalt binder have been used for the dynamic modulus test. Short-term aging, which is covers the time for the production of asphalt plant, transportation, lay-down, and compaction, can be simulated at $135^{\circ}C$ with 2 hour curing. Long-term aging has been carried out for a performance period of asphalt pavement. The dynamic modulus of asphalt pavement increases with aging time. As the nominal aggregate size increases, the change of dynamic modulus is not big.

An Experimental Study on the Utilization of Phosphogypsum as Daily and Intermediate Cover Materials (일일 및 중간복토재로서 인산석고 재활용을 위한 실험 연구)

  • 이용수;정형식
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.133-140
    • /
    • 2002
  • Phosphogypsum is a by-product from the phosphoric acid process for manufacturing fertilizers. It consists mainly of $(CaSO_4.2H_2O)$ and contains some impurities such as$(P_2O_5)$, 불소$(F_-)$, and organic substances. The annual world production of this material is up to 150 million tons and is up to 1.57 million tons in Korea. Therefore studies describe application of phosphogypsum to daily and middle cover materials in landfill. For this Purpose, experiments were performed to evaluate the engineering properties of the material by sieve analysis, specific gravity, consistency of soil, compaction, CBR, permeability, mi environmental characteristics of leaching test, reactor test. The results of this study are as follows : The mixing and layer conditions of CBR value are 6.2~6.3%, coefficient of permeability is $\alpha$$\times10_{-5}~10_{-6}cm/sec$. And leaching test results are far below than those of regulatory requirement of Waste Management Act, Soil Environment Preservation Act in Korea and RCRA in USA. Therefore phosphogypsum can be used as daily and intermediate cover materials in landfill.

A Study on Field Application and Laboratory Performance Evaluation of Warm Mix Asphalt (중온아스팔트 혼합물의 현장 적용성 및 실내 공용성 평가)

  • Yang, Sung-Lin;Baek, Cheol-Min;Jeong, Kyu-Dong;Kim, Yeong-Min;Kim, Yong-Joo;Hwang, Sung-Do
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.9-18
    • /
    • 2012
  • PURPOSES : This study evaluated the field applicability and laboratory performance of warm-mix asphalt (WMA) as an alternative technology in asphalt pavement. METHODS : The pilot road using two different types of WMA mixture and one HMA mixture was constructed in Waegwan-Seokjeok road construction site and the mixtures were sampled at the asphalt plant for laboratory testings. The field applicability was assessed in environmental aspects, such as $CO_2$ emission, and in aspects of constructibility using the existing equipment and procedure, i.e., thickness and density measurement. The laboratory testings included the moisture susceptibility test by AASHTO T283, dynamic modulus test, triaxial repeated load permanent deformation test, and the fatigue test. RESULTS : The temperatures for production and compaction of WMA were $20{\sim}30^{\circ}C$ lower than those for HMA and therefore, the noxious gas emission were significantly reduced. The field density of WMA pavements was similar or better than that of HMA pavement. From the laboratory testings, it was found that WMA mixtures exhibit comparable performance to HMA mixture in moisture susceptibility, permanent deformation, and fatigue performance. CONCLUSIONS : With these results, it would be concluded that WMA could replace the existing HMA technology without any significant issue. To support this conclusion, it is necessary to track the long-term performance of WMA in pilot road.

Development of the Bricks using Paper Ash (제지회를 이용한 벽돌재 개발)

  • Lee, Cheo-Keun;Ahn, Kwang-Kuk;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2003
  • The production of industrial wastes have increased due to the growth of population and industrial development. Among these wastes, especially amount of paper ash has been increased year after year. If it is possible to reuse industrial wastes, it will be beneficial not only economically but also environmentally. In this study, the possibility of the utilization of paper ash were investigated as a construction materials through a series of laboratory testing carried out to evaluate physical properties, compaction, consolidation, permeability and compressive strength characteristics. Concrete bricks with replacement ratio of paper ash at 2, 4, 6, 8, 10, 12, 14, 16, 18, 20%, and clayey bricks with replacement ratio of paper ash at 5, 10, 15, 20, 25, 30% were used in the test in order to evaluate its quality. As a result of tests, it were shown that the maximum replacement ratio of paper ash satisfying the quality standards of concrete bricks and clayey bricks were 11.5% and 12%, respectively.

  • PDF

Development and Performance Evaluation of Liquid-type Chemical Additive for Warm-Mix Asphalt (중온화 액상형 화학첨가제 개발과 이를 적용한 중온 아스팔트의 성능 평가)

  • Baek, Cheolmin;Yang, Sunglin;Hwang, Sungdo
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.107-116
    • /
    • 2013
  • PURPOSES: The liquid-type chemical warm-mix asphalt (WMA) additive has been developed. This study evaluates the basic properties of the additive and the mechanical properties of WMA asphalt and mixture manufactured by using the newly developed chemical additive. METHODS: First, the newly developed WMA additive was applied to the original asphalt by various composition of additive components and dosage ratio of additive. These WMA asphalt binders were evaluated in terms of penetration, softening point, rotational viscosity, and PG grade. Based on the binder test results, one best candidate was chosen to apply to the mixture and then the mechanical properties of WMA mixture were evaluated for moisture susceptibility, dynamic modulus, and rutting and fatigue resistance. RESULTS : According to the binder test, WMA asphalt binders showed the similar properties to the original asphalt binder except the penetraion index of WMA additive was a little higher than original binder. From the Superpave mix design, the optimum asphalt content and volumetric properties of WMA mixture were almost the same with those of hot mix asphalt (HMA) mixture even though the production and compaction temperatures were $30^{\circ}C$ lower for the WMA mixture. From the first set of performance evaluation, it was found that the WMA mixture would have some problem in moisture susceptibility. The additive was modified to improve the resistance to moisture and the second set of performance evaluation showed that the WMA mixture with modified chemical additive would have the similar performance to HMA mixture. CONCLUSIONS : Based on the various laboratory tests, it was concluded that the newly developed chemical WMA additve could be successfully used to produce the WMA mixture with the comparable performance to the HMA mixture. These laboratory evaluations should be confirmed by applying this additive to the field and monitoring the long-term performance of the pavement, which are scheduled in the near future.

Characteristics of High Strength Polyethylene Tape Yarns and Their Composites by Solid State Processing Methods (고상공정법에 의한 고강도 폴리에틸렌 테이프사와 그 복합재료의 특성)

  • Lee, Seung-Goo;Cho, Whan;Joo, Yong-Rak;Song, Jae-Kyung;Joo, Chang-Whan
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.91-100
    • /
    • 1999
  • The manufacture of high strength polyethylene(HSPE) tape yarns has been accomplished by a solid state processing(SSP) method as the compaction of ultra-high molecular weight polyethylene(UHMWPE) powders and drawing of the compacted film under the melting point without any organic solvents. In this study, the characteristics of HSPE tape yarns produced by SSP which is desirable for production cost and environmental aspect were analyzed. As the results, tensile strengths of HSPE tape yarns increased with increasing the draw ratio and the fracture morphology of highly drawn HSPE tape yarns showed more fibrillar shape than the low drawn one. Interfacial shear strengths of HSPE tape yarns with vinylester resin increased by $O_2$ plasma treatment and maximum interfacial shear strength was obtained in the plasma treatment condition of 100W and 5min. In addition, mechanical properties of HSPE tape yarn reinforced composites were investigated and compared with those of the gel spun HSPE fiber reinforced composites.

  • PDF

Manufacturing Characteristics of Environmental-friendly Waste Ash Brick with Industrial By-Products (산업부산물을 이용한 친환경 연소재벽돌의 제조특성)

  • Kim, Han-Seok;Jung, Byung-Gil;Kim, Dae-Yong;Kang, Dong-Hyo;Jang, Seong-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.226-234
    • /
    • 2009
  • The main objective of this study was to evaluate the effects on shape and size, compressive strength, water absorption and heavy metals leaching with various weight mixing ratios in waste ash brick products using waste recycling MSWI(Municipal Solid Waste Incinerator) bottom ash, steel slag and waste building material. The manufacturing processes for the waste ash brick consist of screening, mixing, conveyor transmission, compaction.forming, and curing steps of raw materials. The weight mixing ratios of steel slag around bottom ash were adjusted within the ranges of 10% to 30%. The reported results show that the width and thickness of the manufactured waste ash brick could be satisfied with $90{\pm}2mm\;and\;57{\pm}2mm$, respectively which are K.S. standards of products qualities. And in case of length, only 20-Ba50Ss30, 20-Ba60Wb20 and 20-Ba50Wb30 for the mixing ratios could be satisfied with $190{\pm}2mm$ that is K.S. standards of products quality. The compressive strength and water absorption for 20-Ba50Ss30 and 20-Ba70Wb10 were over $8N/mm^2$ and below 15% respectively that are K.S. standards of manufactured waste ash brick. The results of tests for the heavy metals leaching in the all manufactured waste ash bricks are also passed to the wastes management regulations. The cost analysis of 20-Ba50Ss30 is evaluated. The manufacturing cost is evaluated 34.3 won/brick with 8 hours and 20tons of raw material per day. Incinerators with problems in bottom ash disposal can therefore derive significant benefits from the application of waste ash brick production.

A Study on Cover Material of Waste Landfill with Engineered Stone Sludge (폐기물 매립지의 복토재로 엔지니어드스톤 슬러지의 활용에 관한 연구)

  • Kim, Youngtae;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.7
    • /
    • pp.5-10
    • /
    • 2022
  • The industrial waste is becoming a big problem in the aspect of spatial and environmental in domestic and international. Therefore, the waste reduction and recycling policy has been being implemented as a way to solve this problem. The engineered stone sludge, which is waste, is generated duing the engineered stone production process. since engineered stone sludge is mostly treated by landfill, an increase in the amount of the sludge leads to an increase in landfill sites and treatment costs. therefore, there is a need for a method of resourcization with engineered stone sludge. So, laboratory tests (Plastic and liquid limits, compaction, unconfined compression and permeability test) were conducted to confirm the possibility of using engineered stone sludge mixed with weathered granite soil as a cover material for landfill in this study. The result shows that the mixed soil material with less that 62.5% of engineered stone sludge can be used as a cover material for landfill.

Initial Ignition Time and Calorific Value Enhancement of Briquette with Added Pine Resin

  • Gustan PARI;Lisna EFIYANTI;Saptadi DARMAWAN;Nur Adi SAPUTRA;Djeni HENDRA;Joseph ADAM;Alfred INKRIWANG;Rachman EFFENDI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.207-221
    • /
    • 2023
  • The increasing demand for clean energy requires considerable effort to find alternative energy sources, such as briquettes. This research aims to develop a charcoal briquette with added pine resin (API) that has excellent combustion speed and distinctive aroma. Briquettes are composed of charcoal, pine resin (concentration: 0%-30%), and starch (up to 7%). They are produced in several stages, including coconut shell pyrolysis in conventional combustion, to obtain charcoal for the briquette precursor. Briquette compaction is conducted by mixing and densifying the charcoal, pine resin, and starch using a hydraulic press for 3 min. The hydraulic press has a total surface area and diameter of 57.7 cm2 and 3.5 cm, respectively. The briquettes are dried at different temperatures, reaching 70℃ for 24 h. The study results show that the briquettes have a thickness and diameter of up to 2 and 3.5 cm, respectively; moisture of 2.18%-2.62%; ash of 11.61%-13.98%; volatile matter of 27.15%-51.74%; and fixed carbon content of 40.24%-59.46%. The compressive strength of the briquettes is 186-540 kg/cm2. Their calorific value is 5,338-6,120 kcal/kg, combusting at a high speed of 0.15-0.40 s. The methoxy naphthalene, phenol, benzopyrrole, and lauryl alcohol; ocimene, valencene, and cembrene are found in the API. The API briquette has several chemical compounds, such as musk ambrette, ocimene, sabinene, limonene, 1-(p-cumenyl) adamantane, butane, and propanal, which improve aroma, drug application, and fuel production. Accordingly, API briquettes have considerable potential as an alternative energy source and a health improvement product.