• 제목/요약/키워드: commuting Ricci tensor

검색결과 6건 처리시간 0.019초

REAL HYPERSURFACES WITH ∗-RICCI TENSORS IN COMPLEX TWO-PLANE GRASSMANNIANS

  • Chen, Xiaomin
    • 대한수학회보
    • /
    • 제54권3호
    • /
    • pp.975-992
    • /
    • 2017
  • In this article, we consider a real hypersurface of complex two-plane Grassmannians $G_2({\mathbb{C}}^{m+2})$, $m{\geq}3$, admitting commuting ${\ast}$-Ricci and pseudo anti-commuting ${\ast}$-Ricci tensor, respectively. As the applications, we prove that there do not exist ${\ast}$-Einstein metrics on Hopf hypersurfaces as well as ${\ast}$-Ricci solitons whose potential vector field is the Reeb vector field on any real hypersurfaces.

HOPF HYPERSURFACES OF THE HOMOGENEOUS NEARLY KÄHLER 𝕊3 × 𝕊3 SATISFYING CERTAIN COMMUTING CONDITIONS

  • Xiaomin, Chen;Yifan, Yang
    • 대한수학회보
    • /
    • 제59권6호
    • /
    • pp.1567-1594
    • /
    • 2022
  • In this article, we first introduce the notion of commuting Ricci tensor and pseudo-anti commuting Ricci tensor for Hopf hypersurfaces in the homogeneous nearly Kähler 𝕊3 × 𝕊3 and prove that the mean curvature of hypersurface is constant under certain assumptions. Next, we prove the nonexistence of Ricci soliton on Hopf hypersurface with potential Reeb vector field, which improves a result of Hu et al. on the nonexistence of Einstein Hopf hypersurfaces in the homogeneous nearly Kähler 𝕊3 × 𝕊3.

Real Hypersurfaces in Complex Hyperbolic Space with Commuting Ricci Tensor

  • Ki, U-Hang;Suh, Young-Jin
    • Kyungpook Mathematical Journal
    • /
    • 제48권3호
    • /
    • pp.433-442
    • /
    • 2008
  • In this paper we consider a real hypersurface M in complex hyperbolic space $H_n\mathbb{C}$ satisfying $S{\phi}A\;=\;{\phi}AS$, where $\phi$, A and S denote the structure tensor, the shape operator and the Ricci tensor of M respectively. Moreover, we give a characterization of real hypersurfaces of type A in $H_n\mathbb{C}$ by such a commuting Ricci tensor.

THE RICCI TENSOR OF REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS

  • Perez Juan De Dios;Suh Young-Jin
    • 대한수학회지
    • /
    • 제44권1호
    • /
    • pp.211-235
    • /
    • 2007
  • In this paper, first we introduce the full expression of the curvature tensor of a real hypersurface M in complex two-plane Grass-mannians $G_2(\mathbb{C}^{m+2})$ from the equation of Gauss and derive a new formula for the Ricci tensor of M in $G_2(\mathbb{C}^{m+2})$. Next we prove that there do not exist any Hopf real hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ with parallel and commuting Ricci tensor. Finally we show that there do not exist any Einstein Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$.

COMMUTING STRUCTURE JACOBI OPERATOR FOR SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN COMPLEX SPACE FORMS

  • KI, U-Hang;SONG, Hyunjung
    • East Asian mathematical journal
    • /
    • 제38권5호
    • /
    • pp.549-581
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c), c≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that M satisfies R𝜉S = SR𝜉 and at the same time R𝜉𝜙 = 𝜙R𝜉, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.

Submanifolds of Codimension 3 in a Complex Space Form with Commuting Structure Jacobi Operator

  • Ki, U-Hang;Song, Hyunjung
    • Kyungpook Mathematical Journal
    • /
    • 제62권1호
    • /
    • pp.133-166
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c) for c ≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃 ≠ 2c and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉𝜙 = 𝜙R𝜉 and at the same time S𝜉 = g(S𝜉, 𝜉)𝜉, then M is a real hypersurface in Mn(c) (⊂ Mn+1(c)) provided that $\bar{r}-2(n-1)c{\leq}0$, where $\bar{r}$ denotes the scalar curvature of M.