• Title/Summary/Keyword: common mode signal

Search Result 100, Processing Time 0.025 seconds

An 8b 200MHz Time-Interleaved Subranging ADC With a New Reference Voltage Switching Scheme (새로운 기준 전압 인가 방법을 사용하는 8b 200MHz 시간 공유 서브레인징 ADC)

  • Moon, Jung-Woong;Yang, Hee-Suk;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.4
    • /
    • pp.25-35
    • /
    • 2002
  • This work describes an 8b 200MHz time-interleaved subranging analog-to-digital converter (ADC) based on a single-poly digital CMOS process. Two fine ADCs for lower digital bits of the proposed ADC employ a time-sharing double-channel architecture to increase system speed and a new reference voltage switching scheme to reduce settling time of the reference voltages and chip area. The proposed intermeshed resistor string, which generates reference voltages for fine ADCs, improves linearity and settling time of the reference voltages simultaneously. The proposed sample- and-hold amplifier(SHA) is based on a highly linear common-drain amplifier and passive differential circuits to minimize power consumption and chip area with 8b accuracy and employs input dynamic common mode feedback circuits for high dynamic performance at a 200MHz sampling rate. A new encoding circuit in a coarse ADC simplifies the signal processing between the coarse ADC and two successive fine ADCs.

Displacement Measurement of Multi-Point Using a Pattern Recognition from Video Signal (영상 신호에서 패턴인식을 이용한 다중 포인트 변위측정)

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.675-680
    • /
    • 2008
  • This paper proposes a way to measure the displacement of a multi-point by using a pattern recognition from video signal. Generally in measuring displacement, gab sensor, which is a displacement sensor, is used. However, it is difficult to measure displacement by using a common sensor in places where it is unsuitable to attach a sensor, such as high-temperature areas or radioactive places. In this kind of places, non-contact methods should be used to measure displacement and in this study, images of CCD camera were used. When displacement is measure by using camera images, it is possible to measure displacement with a non-contact method. It is simple to install and multi-point displacement measuring device so that it is advantageous to solve problems of spatial constraints.

  • PDF

Performance of Distributed MISO Systems Using Cooperative Transmission with Antenna Selection

  • Park, Jong-Hyun;Kim, Jae-Won;Sung, Won-Jin
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.163-174
    • /
    • 2008
  • Performance of downlink transmission strategies exploiting cooperative transmit diversity is investigated for distributed multiple-input single-output (MISO) systems, for which geographically distributed remote antennas (RA) in a cell can either communicate with distinct mobile stations (MS) or cooperate for a common MS. Statistical characteristics in terms of the signal-to-interference-plus-noise ratio (SINR) and the achievable capacity are analyzed for both cooperative and non-cooperative transmission schemes, and the preferred mode of operation for given channel conditions is presented using the analysis result. In particular, we determine an exact amount of the maximum achievable gain in capacity when RAs for signal transmission are selected based on the instantaneous channel condition, by deriving a general expression for the SINR of such antenna selection based transmission. For important special cases of selecting a single RA for non-cooperative transmission and selecting two RAs for cooperative transmission among three RAs surrounding the MS, closed-form formulas are presented for the SINR and capacity distributions.

The Design of 128 Channels Cardiac-Activation Pre-Amplifier (128 채널 심장전기도 전치 증폭기의 설계)

  • Yoo, Sun-Kook;Chang, Byung-Chul;Jung, Dong-Il;Han, Young-Oh
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.11
    • /
    • pp.550-556
    • /
    • 2001
  • The computerized cardiac analysis system, which acquires and analyzes the electrical activation signal propagating along the surface of the heart, is indispensible equipment for the open heart surgery and electrical cardiac study. In this paper, the design requirement and the electrical circuit analysis are performed to construct the multi-channel cardiac activation pre-amplifier necessary for a signal conditioning circuit. The general 64 channel configuration is expanded into 128 channels to enhance the spatial resolution on the mapped surface of the heart. The 128 channels pre-amplifier consists of input circuit, differential amplifier, right leg driven circuit and isolation part. It has distinct features; high voltage protection, leakage current limitation, isolation and the maximization of common mode rejection ratio with respect to the half-cell potential difference due to different electrode materials. The final pre-amplifier circuit is assembled with 8 boards, each of which composing of 16 channels.

  • PDF

Safety Review Experience of Computerized Logic System for YGN 3 and 4

  • Yun, Won-Young;Kim, Dae-Il;Koh, Jong-Soo;Kim, Bok-Ryul;Oh, Sung-Hun;Lim, Jang-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.602-607
    • /
    • 1995
  • This article presents safety review experience of microprocessor-based Interposing Logic System(ILS) of Engineering Safety Feature Actuation System(ESFAS). The ILS is the first application of computerized logic design to safety system in Korean nuclear power plants without verification of the system reliability by proven technology concept. As a result of evaluation for the ILS, Korea Institute of Nuclear Safety(KINS) concluded that the microprocessor-based ILS is not acceptable in some features detailed enough to defend against software common mode failures(CMF). Therefore, we required licensee to install hardwired interlock signal configuration and a Hardwired Backup Panel to control safety-related equipment. We believe that the microprocessor-based ILS with the hardwired backup panel and inter-connection of interlock signal by hardwired configuration will improve the plant safety.

  • PDF

Displacement Measurement of Multi-point Using a Pattern Recognition from Video Signal (영상 신호에서 패턴인식을 이용한 다중 포인트 변위측정)

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1256-1261
    • /
    • 2008
  • This paper proposes a way to measure the displacement of a multi-point by using a pattern recognition from video signal. Generally in measuring displacement, gab sensor, which is a displacement sensor, is used. However, it is difficult to measure displacement by using a common sensor in places where it is unsuitable to attach a sensor, such as high-temperature areas or radioactive places. In this kind of places, non-contact methods should be used to measure displacement and in this study, images of CCD camera were used. When multi-point is measure by using a pattern recognition, it is possible to measure displacement with a non-contact method. It is simple to install and multi-point displacement measuring device so that it is advantageous to solve problems of spatial constraints.

A Study on Performance of Indirect-contact Driven-right-leg Ground in Indirect-contact ECG Measurement (간접접촉 심전도 측정에서의 간접접촉 오른발 구동 접지 성능에 대한 연구)

  • Lim, Yong-Gyu;Kim, Ko-Keun;Park, Kwang-Suk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.4
    • /
    • pp.280-287
    • /
    • 2008
  • For the reduction of common-mode noise level in Indirect-contact ECG (IDC-ECG) measurement a driven-right-leg grounding method was a lied to the IDC-ECG. Because the IDC-ECG does not require any direct contact between the electrodes and the human skin. it is adequate for un-constraining long-term ECG measurement at home and its various applications are now under development. However, larger 60 Hz noise induced by power line a ears in IDC-BCG than in conventional ECG, that is a restriction of IDC-ECG a application. In this study, the driven-right-leg ground which has been used in conventional direct-contact ECG, was adapted to the IDC-ECG measurement by feedback of the inversion of amplified common-mode noise to the body through the conductive fertile laid on the chair seat By this study, indirect-contact driven-right-leg ground was developed and it was shown to work stably. It was shown that the level of 60Hz power line noise was reduced to about -40 dB when the driven-right-leg gain was 1000. This study shows that we can extend the upper limit of the frequency band of IDC-ECG to 100Hz from 30Hz which is conventional upper limit in IDC-ECG, and we can raise the ground impedance between the body and conductive textile. So it is expected that the application area of the IDC-ECG will be extended by the results of this study.

  • PDF

Design of High-Speed Comparators for High-Speed Automatic Test Equipment

  • Yoon, Byunghun;Lim, Shin-Il
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.291-296
    • /
    • 2015
  • This paper describes the design of a high-speed comparator for high-speed automatic test equipment (ATE). The normal comparator block, which compares the detected signal from the device under test (DUT) to the reference signal from an internal digital-to-analog converter (DAC), is composed of a rail-to-rail first pre-amplifier, a hysteresis amplifier, and a third pre-amplifier and latch for high-speed operation. The proposed continuous comparator handles high-frequency signals up to 800MHz and a wide range of input signals (0~5V). Also, to compare the differences of both common signals and differential signals between two DUTs, the proposed differential mode comparator exploits one differential difference amplifier (DDA) as a pre-amplifier in the comparator, while a conventional differential comparator uses three op-amps as a pre-amplifier. The chip was implemented with $0.18{\mu}m$ Bipolar CMOS DEMOS (BCDMOS) technology, can compare signal differences of 5mV, and operates in a frequency range up to 800MHz. The chip area is $0.514mm^2$.

Droop Method for High-Capacity Parallel Inverters in Islanded Mode Using Virtual Inductor (독립운전 모드에서 가상 인덕터를 활용한 대용량 인버터 병렬운전을 위한 드룹제어)

  • Jung, Kyo-Sun;Lim, Kyung-Bae;Kim, Dong-Hwan;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 2015
  • This paper investigates the droop control-based real and reactive power load sharing with a virtual inductor when the line impedance between inverter and Point of Common Coupling (PCC) is partly and unequally resistive in high-capacity systems. In this paper, the virtual inductor method is applied to parallel inverter systems with resistive and inductive line impedance. Reactive power sharing error has been improved by applying droop control after considering each line impedance voltage drop. However, in high capacity parallel systems with large output current, the reference output voltage, which is the output of droop controller, becomes lower than the rated value because of the high voltage drop from virtual inductance. Hence, line impedance voltage drop has been added to the droop equation so that parallel inverters operate within the range of rated output voltage. Additionally, the virtual inductor value has been selected via small signal modeling to analyze stability in transient conditions. Finally, the proposed droop method has been verified by MATLAB and PSIM simulation.

Low-noise fast-response readout circuit to improve coincidence time resolution

  • Jiwoong Jung;Yong Choi;Seunghun Back;Jin Ho Jung;Sangwon Lee;Yeonkyeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1532-1537
    • /
    • 2024
  • Time-of-flight (TOF) PET detectors with fast-rise-time scintillators and fast-single photon time resolution silicon photomultiplier (SiPM) have been developed to improve the coincidence timing resolution (CTR) to sub-100 ps. The CTR can be further improved with an optimal bandwidth and minimized electronic noise in the readout circuit and this helps reduce the distortion of the fast signals generated from the TOF-PET detector. The purpose of this study was to develop an ultra-high frequency and fully-differential (UF-FD) readout circuit that minimizes distortion in the fast signals produced using TOF-PET detectors, and suppresses the impact of the electronic noise generated from the detector and front-end readout circuits. The proposed UF-FD readout circuit is composed of two differential amplifiers (time) and a current feedback operational amplifier (energy). The ultra-high frequency differential (7 GHz) amplifiers can reduce the common ground noise in the fully-differential mode and minimize the distortion in the fast signal. The CTR and energy resolution were measured to evaluate the performance of the UF-FD readout circuit. These results were compared with those obtained from a high-frequency and single ended readout circuit. The experiment results indicated that the UF-FD readout circuit proposed in this study could substantially improve the best achievable CTR of TOF-PET detectors.