• Title/Summary/Keyword: combustion characteristic

Search Result 461, Processing Time 0.031 seconds

In-cylinder Flame Visualization and Flame Propagation Characteristics of SI Engine by using Optimal Threshold Method (Optimal Threshold 법을 이용한 가솔린 기관의 실린더 내화염 가시화 및 화염 전파 특성에 관한 연구)

  • 김진수;전문수;윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.96-104
    • /
    • 2000
  • It is well known that combustion stability under idle and part-load conditions directly affect fuel economy and exhaust emission. In practice, there have been a lot of studies so that a significant improvement in combustion stability has been achieved in this research field. However, applying published results to the development process of mass production engine, there are still many problems which are solved previously. In this study, initial flame behavior and flame propagation characteristic were investigated statistically in order to optimize combustion chamber shapes in the development stage of mass production S.I. engine. To the purpose, the authors applied the flame image capturing system to single cylinder optical engine. The captured flame images were effectively analyzed by using the image processing program which was developed by the authors and adopted new threshold algorithm instead of conventional histogram analysis. In addition, the cylinder pressure was also measured simultaneously to compare evaluated flame results with cylinder pressure data in terms of the combustion characteristics, combustion stability, and cycle-to-cycle combustion variability.

  • PDF

Mathematical and Experimental Study for Mixed Energetic Materials Combustion in Closed System

  • Kong, Tae Yeon;Ryu, Byungtae;Ahn, Gilhwan;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.267-276
    • /
    • 2022
  • Modelling the energy release performance of energetic material combustion in closed systems is of fundamental importance for aerospace and defense application. In particular, to compensate for the disadvantage of the combustion of single energetic material and maximize the benefits, a method of combusting the mixed energetic materials is used. However, since complicated heat transfer occurs when the energetic material is combusted, it is difficult to theoretically predict the combustion performance. Here, we suggest a theoretical model to estimate the energy release performance of mixed energetic material based on the model for the combustion performance of single energetic material. To confirm the effect of parameters on the model, and to gain insights into the combustion characteristics of the energetic material, we studied parameter analysis on the reaction temperature and the characteristic time scales of energy generation and loss. To validate the model, model predictions for mixed energetic materials are compared to experimental results depending on the amount and type of energetic material. The comparison showed little difference in maximum pressure and the reliability of the model was validated. Finally, we hope that the suggested model can predict the energy release performance of single or mixed energetic material for various types of materials, as well as the energetic materials used for validation.

Combustion Chracteristics of Biomass and Refuse Derived Fuel (바이오매스와 폐기물 고형연료의 연소특성)

  • Gu, Jae-Hoi;Oh, Sea Cheon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.456-461
    • /
    • 2012
  • To verify the utilization of biomass as energy, the combustion characteristic has been studied by an experimental combustion furnace under an isothermal and non-isothermal combustion. The wood pellet, rice straw and rice husk were used as biomass samples in this work. The characteristics of emission gases, dusts and residues from biomass combustion have been analyzed and compared with those of reuse derived fuel (RDF). From isothermal combustion experiments, it was found that the incomplete combustion of rice straw was greater that that of rice husk, wood pellet and RDF. This is due to the fact that the combustion reaction rate of the rice straw was faster than that of other samples, and the oxygen concentration in rice straw combustion was rapidly decreasing. It was also found that $NO_{X}$ concentration of emission gas from wood pellet combustion was the lowest. From non-isothermal combustion experiments, it was found that all samples were burned before $900^{\circ}C$. Also, the temperature range of $NO_{X}$ emission was similar to that of CO emission, on the other hand, $SO_{2}$ was emitted at a higher temperature than that of CO emission.

A Study on the Combustion Characteristics of Pelletized and Fluff RDF (Refuse Derived Fuel) (성형 및 비성형 폐기물 고형연료의 연소특성에 관한 연구)

  • Sanjel, Nawaraj;Gu, Jae-Hoi;Kwon, Woo-Teck;Oh, Sea Cheon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.333-338
    • /
    • 2012
  • To verify the utilization of fluff refuse derived fuel (RDF) as energy source, the combustion charateristic has been studied by an experimental combustion furnace under various temperatures. The characteristics of flue gas, dust and residue from fluff RDF combustion has been analyzed and compared with those of pelletized RDF. From this work, it was found that the incomplete combustion of fluff RDF was greater than that of pelletized RDF because the combustion reaction rate of fluff RDF was faster than that of pelletized RDF, and oxgen concentration in fluff RDF combustion decreased rapidly. It was also found that carbon monoxide concentration of flue gas from fluff RDF combustion increased with combustion temperature because the oxygen consumption and the incomplete combustion increased. Therefore, it is felt that the combustion operation conditions of fluff RDF should be carefully determined.

A Study on the Combustion Characteristic in End-Burning Hybrid Propulsion System using $GN_2O$/PE ($GN_2O$/PE를 사용한 End-Burning 하이브리드 추진 시스템의 연소 특성 연구)

  • Woo, Kyoung-Jin;Moon, Keun-Hwan;Oh, Ji-Sung;Lee, Jung-Pyo;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.484-488
    • /
    • 2010
  • In this study, combustion experiments of the End-Burning Hybrid Propulsion System using $GN_2O$(Gas Nitrous oxide)/HDPE were performed and the results were compared to those of the combustion experiments using GOX/HDPE. The regression rate of the solid fuel using $GN_2O$ is lower than that of the solid fuel using GOX since oxidizer inlet velocity of $GN_2O$ is lower than that of GOX. However, in case of using $GN_2O$, the characteristic velocity is higher than those of the GOX. The combustion chamber pressure and thrust were relatively kept constant during combustion.

  • PDF

Experimental Investigation on Combustion Performance of a Pintle Injector Engine with Double-row Rectangular Slot (핀틀 인젝터 Rectangular Slot 2열 형상에 따른 연소성능에 관한 연구)

  • Ryu, Hobin;Yu, Isang;Kim, Wanchan;Shin, Donghae;Ko, Youngsung;Kim, Seonjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.25-33
    • /
    • 2017
  • In this study, combustion tests were performed to investigate combustion performance of a pintle injector engine with double row rectangular slot which uses kerosene and liquid oxygens as propellants. The double row rectangular slot was designed to improve the combustion performance of a pintle engine with a single row and the blockage factor was changed from 0.7 to 1.0. The main design parameters of the double row were distance between rows, area ratio and aspect ratio. The characteristic velocity efficiency was measured from 92.4 to 96.9 percentage for double row but 86.8 percentage for single row. It showed the highest combustion performance at the BF 0.85.

Combustion Characteristics of the Gaseous-methane & Gaseous-oxygen Reactants under Highly Fuel-rich Conditions (연료과농 조건에서의 기체메탄-기체산소 반응물의 연소특성)

  • Kang, Yun Hyeong;Ahn, Hyun Jong;Bae, Chang Han;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.45-52
    • /
    • 2021
  • A hot-firing test was conducted using gaseous-methane and gaseous-oxygen under highly fuel-rich condition as a prior study for the development of a liquid propellant small rocket engine. To compare combustion characteristics for various equivalence ratios, the oxygen flow rate was set to 12 g/s and the methane flow rate was changed according to the equivalence ratio. As a result, it was observed that the steady-state characteristic velocity obtained during the hot-firing test steeply rose in the latter part of each test: the difference between the former and the latter steady value was enhanced overall in proportion to the equivalence ratio. Based on this, the equivalence ratio range depending on the variational characteristics of the characteristic velocity could be divided into three combustion regimes.

Prediction of Fire Curves Considering the Relationship between Mass Increase and Combustion Time of Combustibles (연소물의 질량증가와 연소시간의 상관관계를 고려한 화재곡선 예측)

  • Eun-Joon Nam;Tae-Il Lee;Goang-Seup Zi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • In this paper, we aimed to convert the fire curve in volume units to a fire curve per unit area for application in the Fire Dynamic Simulator (FDS) surface heat release rate method. The fire curve was expressed dimensionlessly considering the total combustion characteristic time, and improvements were made to represent the appropriate ratios for the growth , steady, and decay phases concerning the fire intensity. Additionally, a correction function for combustion characteristic time varying with mass increase was derived. Also to control the growth time values according to the increase in mass, a function to correct the growth phase ratio was derived. Consequently, utilizing existing data, a formula was established to determine the reference mass for combustion materials and predict the fire curve based on mass increase.

Mixed combustion expert system for General Manager at Thermal Power Plant (저열량탄 혼소 전문가시스템 구현 방안)

  • Kim, Hae-Soon;Kim, Sun-Ic;Joo, Yong-Jae;Kim, Ji-Hyun;Kim, Tae-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1374-1375
    • /
    • 2011
  • Mixed combustion expert system is implemented to prevent various problems in combustion process by increasing rate of mixing low calorific value coal to reduce costs. This system shows optimal coal mixture rate by interfacing CBS(Coal Blending Screener, Implementing slagging and fouling factors by coal characteristic and algorithm), SGE(Stream Generate Expert, Combustion process model) and CFS(Configured Fireside Simulator, Computational fluid dynamics).

  • PDF

A Numerical Study on Quantification of Combustion-Response Parameters of Impinging-Jet Injectors using Time-Lag Model (시간지연 모델을 이용한 충돌형 분사기의 연소응답 인자 도출 및 정량화에 관한 수치해석적 연구)

  • Son, Jin Woo;Kim, Chul Jin;Sohn, Chae Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.5-7
    • /
    • 2012
  • This study presents relations between the time lag and interaction index of the impinging-jet injectors using time lag model in a model chamber. To analyze the response of the flame, 5% amplitude of oxidizer velocity is artificially perturbed at a resonance frequency. At the mixing point of fuel and oxidizer, which determines the characteristic length, the relationship between velocity perturbation and heat release rate is quantified by combustion parameters of interaction index and time lag. As the improved method to apply the time-lag, the method using the average velocity obtained from numerical results is suggested.

  • PDF