Browse > Article

A Study on the Combustion Characteristics of Pelletized and Fluff RDF (Refuse Derived Fuel)  

Sanjel, Nawaraj (Department of Environmental Engineering, Kongju National University)
Gu, Jae-Hoi (Plant Engineering Center, IAE)
Kwon, Woo-Teck (Creen Ceramics Division, KICET)
Oh, Sea Cheon (Department of Environmental Engineering, Kongju National University)
Publication Information
Applied Chemistry for Engineering / v.23, no.3, 2012 , pp. 333-338 More about this Journal
Abstract
To verify the utilization of fluff refuse derived fuel (RDF) as energy source, the combustion charateristic has been studied by an experimental combustion furnace under various temperatures. The characteristics of flue gas, dust and residue from fluff RDF combustion has been analyzed and compared with those of pelletized RDF. From this work, it was found that the incomplete combustion of fluff RDF was greater than that of pelletized RDF because the combustion reaction rate of fluff RDF was faster than that of pelletized RDF, and oxgen concentration in fluff RDF combustion decreased rapidly. It was also found that carbon monoxide concentration of flue gas from fluff RDF combustion increased with combustion temperature because the oxygen consumption and the incomplete combustion increased. Therefore, it is felt that the combustion operation conditions of fluff RDF should be carefully determined.
Keywords
fluff RDF; pelletized RDF; combustion characteristic; flue gas;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. C. Oh, J. H. Ryu, H. Kwak, S.-Y. Bae, and K.-H. Lee, J. Korean Ind. Eng. Chem., 19, 191 (2008).
2 K.-H. Lee, Journal of Analytical and Applied Pyrolysis, 86, 348 (2009).   DOI   ScienceOn
3 S. Karagoz, T. Karayildirim, S. Ucar, M. Yuksel, and J. Yanik, Fuel, 82, 415 (2003).   DOI   ScienceOn
4 P. Klimantos, N. Koukouzas, A. Katsiadakis, and E. Kakaras, Energy, 34, 708 (2009).   DOI   ScienceOn
5 G. Luc, P. Maria, V. Razvan, B. Jerome, T. Mohabd, G. Benny, and H. Ulrik, Fuel, 87, 1381 (2008).
6 Y. C. Byun, W. Namkung, M. H. Cho, J. W. Chung, Y. S. Kim, J. H. Lee, C. R. Lee, and S. M. Hwang, Environmental Science and Technology, 44, 6680 (2010).   DOI   ScienceOn
7 S.-K. Hong, J. Korean Society of Environmental Technology, 8, 330 (2007).
8 D.-G. Lee, H.-Y. Shin, H. Kwak, and S.-Y. Bae, J. Korean Society of Waste Management, 22, 533 (2005).
9 H. J. So, K. H. Kim, N. S. Roh, D. H. Shin, M. S. Yi, S. K. Lee, and T. I. Ohm, J. Korean Society of Waste Management, 19, 534 (2002).
10 G. Piao, S. Aono, S. Mori, S. Deguchi, Y. Fujima, M. Kondoh, and M. Yamaguchi, Waste Management, 18, 509 (1998).   DOI   ScienceOn
11 G. Piao, S. Aono, M. Kondoh, R. Yamazaki, and S. Mori, Waste Management, 20, 443 (2000).   DOI   ScienceOn
12 G. Q. Liu, Y. Itaya, R. Yamazaki, S. Mori, M. Yamaguchi, and M. Kondoh, Waste Management, 21, 427 (2001).   DOI   ScienceOn
13 M. Sakka, T. Kimura, K. Sakka, and K. Ohmiya, Biosci. Biotechnol. Biochem., 68, 466 (2004).   DOI   ScienceOn
14 M. Sakka, T. Kimura, K. Ohmiya, and K. Sakka, Biosci. Biotechnol. Biochem., 69, 2081 (2005).   DOI   ScienceOn
15 M. Sakka, T. Kimura, and K. Sakka, Biosci. Biotechnol. Biochem., 70, 2868 (2006).   DOI   ScienceOn
16 W.-H. Kim, J. of Korean Inst. of Resources Recycling, 15, 46 (2006).