• Title/Summary/Keyword: combined exposure conditions

Search Result 42, Processing Time 0.053 seconds

Deformation Characteristics of Zircaloy-4 Fuel Cladding due to Oxidation in Environment of High Temperature and Steam (고온, 수증기 속에서 산화된 질칼로이-4 핵연료 피복관의 변형 특성에 관한 연구)

  • Jung, Sung-Hoon;Suh, Kyung-Soo;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.218-227
    • /
    • 1986
  • Studies were conducted to determine the extent of oxidation and same of the mechanical property changes of Zircaloy-4 fuel cladding after it was exposed to hot steam environment. The purpose of these tests was to provide some informations on the embrittlement behavior of CANDU type fuel cladding, which could be experienced under the loss-of-coolant accident conditions. The Zircaloy fuel cladding tubes were exposed in a steam environment at the temperature of 90$0^{\circ}C$, 1,00$0^{\circ}C$. The growth of the ZrO$_2$ layer combined with an oxygen rich $\alpha$-phase layer into the Zircaloy tube material was found as a function of time t and temperature of steam exposure, E=1.1√Dt+0.002 where D is a temperature dependent diffusion coefficient. The tensile strength of the specimens exposed for a short period increased but decreased continuously with further exposure. The circumferential elongation was drastically changed with the exposure time while the hoop strength did't decrease greatly. The X-ray measurement of preferred orientation of the Zircaloy tube material indicated that grains in the as received tube were oriented such that the poles of the basal (0001) planes were predominantly radial, while the poles of the basal plane in the tube materials heattreated at 1,00$0^{\circ}C$ were oriented tangentially. It appears that this reoriented texture may contribute to lessening the decrease of the hoop strength of the heat treated Zircaloy tube material.

  • PDF

The performance of PEMFC during exposure to simultaneous sulfur impurity poisoning on cathode and anode (공기극과 연료극의 복합 황불순물에 의한 고분자 전해질막 연료전지의 성능에 미치는 영향)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.594-598
    • /
    • 2012
  • Polymer electrolyte membrane fuel cell(PEMFC) performance degrades seriously when sulfur dioxide and hydrogen sulfide are contaminated in the fuel gas at anode and air source at cathode, respectively. This paper reveals the effect of the combined sulfur impurity poisoning on both PEMFC cathode and anode parts through measuring electrical performance on single FC operated under 1 ppm to 10 ppm impurity gases. The severity of $SO_2$ and $H_2S$ poisoning depended on concentrations of impurity gases under optimum operating conditions($65^{\circ}C$ of cell temperature and 100 % relative humidity). Sulfur adsorption occured on the surface of Pt catalyst layer on MEA. In addition, MEA poisoning by impurity gases were cumulative. After four consecutive poisonings with 1, 3, 5 to 10 ppm, the fuel cell performance of PEMFC was decrease upto 0.54 V(76 %) from 0.71 V.

The Development of Gamma Energy Identifying Algorithm for Compact Radiation Sensors Using Stepwise Refinement Technique

  • Yoo, Hyunjun;Kim, Yewon;Kim, Hyunduk;Yi, Yun;Cho, Gyuseong
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.91-97
    • /
    • 2017
  • Background: A gamma energy identifying algorithm using spectral decomposition combined with smoothing method was suggested to confirm the existence of the artificial radio isotopes. The algorithm is composed by original pattern recognition method and smoothing method to enhance the performance to identify gamma energy of radiation sensors that have low energy resolution. Materials and Methods: The gamma energy identifying algorithm for the compact radiation sensor is a three-step of refinement process. Firstly, the magnitude set is calculated by the original spectral decomposition. Secondly, the magnitude of modeling error in the magnitude set is reduced by the smoothing method. Thirdly, the expected gamma energy is finally decided based on the enhanced magnitude set as a result of the spectral decomposition with the smoothing method. The algorithm was optimized for the designed radiation sensor composed of a CsI (Tl) scintillator and a silicon pin diode. Results and Discussion: The two performance parameters used to estimate the algorithm are the accuracy of expected gamma energy and the number of repeated calculations. The original gamma energy was accurately identified with the single energy of gamma radiation by adapting this modeling error reduction method. Also the average error decreased by half with the multi energies of gamma radiation in comparison to the original spectral decomposition. In addition, the number of repeated calculations also decreased by half even in low fluence conditions under $10^4$ ($/0.09cm^2$ of the scintillator surface). Conclusion: Through the development of this algorithm, we have confirmed the possibility of developing a product that can identify artificial radionuclides nearby using inexpensive radiation sensors that are easy to use by the public. Therefore, it can contribute to reduce the anxiety of the public exposure by determining the presence of artificial radionuclides in the vicinity.

Measurement of Carbonation Depth of Concrete in Old Buildings and Experimental Evaluation of Carbonation Degree and CO2 Absorption Using Differential Thermal Gravimetric Analysis, Part2 (노후 건축물의 콘크리트 탄산화 깊이 측정과 시차열 중량분석을 통한 탄산화도 및 CO2 흡수량 실험적 평가, Part2)

  • Lee, Sang-Hyun;Ki, Jun-Do;Cho, Hong-Bum;Park, Chang-Gun;Kim, Young-Sun;Moon, Hyung-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.317-318
    • /
    • 2023
  • This study is part of the carbonation degree DB accumulation through quantitative analysis of carbonation depth, Ca(OH)2 and CO2 according to the type of finish and years of use of old concrete structures in order to predict the amount of CO2 that can be absorbed through carbonation of concrete. To this end, the depth of carbonation of the concrete core specimen is measured using an indicator, and the dry amount of water combined with CO2 in the sample is measured using a differential thermal gravimetric analyzer for samples in the carbonation area and non-carbonated area classified by the indicator, and the absorption compared to the weight of the sample. The amount of absorbed CO2 was calculated. In addition, the degree of carbonation was calculated through quantitative comparison of Ca(OH)2 in the carbonation section and non-carbonation section. In the future, we will continue to add the survey and analysis data of dismantled structures and use them as basic data for estimating the amount of carbon dioxide that can be absorbed according to the exposure conditions and years of use by concrete mix.

  • PDF

Migration Measurement of Volatile Organic Compounds (VOCs) from Polystyrene-made Food Containers into Distilled Water (폴리스티렌 식품용기로부터 증류수로 용출되는 휘발성유기화합물의 분석)

  • Kim, Nam-Hoon;Kim, Ae-Kyeong;Cho, Tae-Hee;Park, Kyung-Ai;Kwak, Jae-Eun;Kim, Ji-Young;Kim, Il-Young;Chae, Young-Joo;Kim, Min-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.3
    • /
    • pp.203-208
    • /
    • 2010
  • In this study, the level of migration of 5 kinds of volatile organic compounds (VOCs) (toluene, styrene, ethylbenzene, isopropylbenzene and n-propylbenzene) into distilled water from polystyrene-made food containers was measured using Purge&Trap combined with GC/FID. The contents of the VOCs which have regulatory limits in Korea food code only for material specification were determined under three exposure conditions which were 30 min at $60^{\circ}C$, 30 min at $95^{\circ}C$ and actual situation of instant noodle intake. The calibration curve of 5 compounds showed good linearity ($^r2$ = 0.9976~0.9995) within the concentration range of 1~50 ng/mL. The limit of detection (LOD) and limit of quantification (LOQ) were validated at range of 0.041~0.092 and 0.135~0.304 ng/mL, respectively. The average migration contents of 5 compounds were below 5 ng/mL except for styrene. The average contents of styrene were highly detected at $95^{\circ}C$ for 30 min exposure (52.71 ng/mL). Under actual condition at instant noodle intake, the average contents of styrene was 17.23 ng/mL. The results demonstrated that the migration rate of VOCs was related to storage temperature and time.

Experimental Investigation on Post-Fire Performances of Fly Ash Concrete Filled Hollow Steel Column

  • Nurizaty, Z.;Mariyana, A.A.K;Shek, P.N.;Najmi, A.M. Mohd;Adebayo, Mujedu K.;Sif, Mohamed Tohami M.A;Putra Jaya, Ramadhansyah
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.335-344
    • /
    • 2021
  • In structural engineering practice, understanding the performance of composite columns under extreme loading conditions such as high-rise bulding, long span and heavy loads is essential to accuratly predicting of material responses under severe loads such as fires or earthquakes. Hitherto, the combined effect of partial axial loads and subsequent elevated temperatures on the performance of hollow steel column filled fly ash concrete have not been widely investigated. Comprehensive test was carried out to investigate the effect of elevated temperatures on partial axially loaded square hollow steel column filled fly ash concrete as reported in this paper. Four batches of hollow steel column filled fly ash concrete ( 30 percent replacement of fly ash), (HySC) and normal concrete (CFHS) were subjected to four different load levels, nf of 20%, 30%, 40% and 50% based on ultimate column strength. Subsequently, all batches of the partially damage composite columns were exposed to transient elevated temperature up to 250℃, 450℃ and 650℃ for one hour. The overall stress - strain relationship for both types of composited columns with different concrete fillers were presented for each different partial load levels and elevated temperature exposure. Results show that CFHS column has better performance than HySC at ambient temperature with 1.03 relative difference. However, the residual ultimate compressive strength of HySC subjected to partial axial load and elevated temperature exposure present an improvement compared to CFHS column with percentage difference in range 1.9% to 18.3%. Most of HySC and CFHS column specimens failed due to local buckling at the top and middle section of the column caused by concrete crushing. The columns failed due to global buckling after prolong compression load. After the compression load was lengthened, the columns were found to fail due to global buckling except for HySC02.

Numerical Analysis of Collapse Behavior in Industrial Stack Explosive Demolition (산업용 연돌 발파해체에서 붕괴거동에 관한 수치해석적 연구)

  • Pu-Reun Jeon;Gyeong-Jo Min;Daisuke Fukuda;Hoon Park;Chul-Gi Suk;Tae-Hyeob Song;Kyong-Pil Jang;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.62-72
    • /
    • 2023
  • The aging of plant structures due to industrialization in the 1970s has increased the demand for blast demolition. While blasting can reduce exposure to environmental pollution by shortening the demolition period, improper blasting design and construction plans pose significant safety risks. Thus, it is vital to consider optimal blasting demolition conditions and other factors through collapse behavior simulation. This study utilizes a 3-D combined finite-discrete element method (FDEM) code-based 3-D DFPA to simulate the collapse of a chimney structure in a thermal power plant in Seocheon, South Korea. The collapse behavior from the numerical simulation is compared to the actual structure collapse, and the numerical simulation result presents good agreement with the actual building demolition. Additionally, various numerical simulations have been conducted on the chimney models to analyze the impact of the duct size in the pre-weakening area. The no-duct, duct, and double-area duct models were compared in terms of crack pattern and history of Z-axis displacement. The findings show that the elapse-time for demolition decreases as the area of the duct increases, causing collapse to occur quickly by increasing the load-bearing area.

Comparison of the Sonodegradation of Naphthalene and Phenol by the Change of Frequencies and Addition of Oxidants or Catalysts (주파수 변화 및 보조제 첨가에 따른 나프탈렌 및 페놀의 초음파 분해효율 비교)

  • Park, Jong-Sung;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.706-713
    • /
    • 2010
  • The research seeks to find the optimal conditions for sonodegradation of naphthalene and phenol as exemplary organic pollutants to be subjected to ultrasound in varying frequencies (28 kHz, 580 kHz, and 1,000 kHz) and in the presence of different kinds of additive (T$TiO_2$, $H_2O_2$, $FeSO_4$, Zeolite, and Cu). In cases of both naphthalene and phenol, 580 kHz of ultrasound has proven to be the most effective among others at sonodegradation. Based on the observation that OH radicals are also produced in maximum under exposure of 580 kHz of ultrasound, we concluded that this frequency of ultrasound creates hospitable condition for the combined process of degradation by pyrolysis and oxidization. $FeSO_4's$ degradation rate and k1 value have increased by approximately 1.8 times compared with the results of the solutions without any additives. This seems to be the result of ultrasound reaction which, accompanied by Fenton's reaction, increased the oxidative degradation and the production of OH radicals. However, application of ultrasound and Fenton's reaction is limited to the batch type conditions, as its use in continuous system can cause loss of iron or decay of the cistern, thereby creating additional pollutants. When the additive is replaced with $TiO_2$, on the contrary, the rate of sonodegradation has increased up to 20% compared to when there was no additive. We therefore conclude that $TiO_2$ could prove to be an effective additive for ultrasound degradation in continuous treatment system.

Effect of Electrolyzed Water and Citric acid On Quality Enhancement and Microbial Inhibition in Head Lettuce (전해수와 구연산을 이용한 양상치의 품질 향상 및 미생물 저감화 효과)

  • Jin, Yong-Guo;Kim, Tae-Woong;Ding, Tian;Oh, Deog-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.578-586
    • /
    • 2009
  • This study was conducted to determine the effects of alkaline electrolyzed water (AIEW), acidic electrolyzed water (AcEW), 1% citric acid, and 100 ppm sodium hypochlorite, either alone or in combination with citric acid, in reducing the populations of spoilage bacteria and foodborne pathogens (Listeria monocytogenes and Escherichia coli O157:H7) on lettuce at various exposure times (3, 5, and 10 min) with different dipping temperatures (1, 20, 40, and $50^{\circ}C$). In addition, the inhibitory effect of alkaline electrolyzed water combined with citric acid on the browning reaction during storage at $4^{\circ}C$ for 15 days was investigated. Compared to the untreated control, electrolyzed water more effectively reduced the number of total bacteria, mold, and yeast than 100 ppm sodium hypochlorite under the same treatment conditions. All treatments exposed for 5 min significantly reduced the numbers of total bacteria, yeast, and mold on head lettuce. The inactivation effect of each treatment on head lettuce was enhanced as the dipping temperature increased from 1 to $50^{\circ}C$, but there was no significantly difference at temperatures greater than $40^{\circ}C$ (p<0.05). The total counts of yeast and mold in head lettuce were completely eliminated when a combination of 1% citric acid and AlEW treatment was used at temperatures greater than $40^{\circ}C$. However, decreased reduction in L. monocytogenes (2.81 log CFU/g), and E. coli O157:H7 (2.93 log CFU/g) on head lettuce was observed under these treatment conditions. In addition, enhanced anti-browning effect was observed when the samples were subjected to both 1% citric acid and AlEW treatment at temperatures greater than $40^{\circ}C$ compared to when single treatments alone were used. Thus, this combined treatment might be considered a potentially beneficial sanitizing method for improving the quality and safety of head lettuce.

A Study on the Happening and the Culture of Hippies (Happening 과 Hippies 문화에 관한 연구)

  • 이효진
    • The Research Journal of the Costume Culture
    • /
    • v.8 no.3
    • /
    • pp.387-410
    • /
    • 2000
  • The purpose of this study was to approach to the internal meanings included in the Happening and the culture of hippies, by analysing the basic mental conditions in the process of the Happening. And this study was composed of the concept and the development of Happening, the characteristics of the hippies that related in the midst of the happening's background, and the formativeness between these factors and hippies'fashion. Since the happening a genre of fine arts expression attended the New School for social research in New York in 1954, Allan Kaprow direct-influenced by John Cage used the word 'Hapening'first, practicing '18 Happenings in 6 parts'at the Rueben gallery in 1959. Kaprow's 18 Happenings was one of the earliest opportunities for a wider public to attend the live events that several artists had performed more privately for various friends. Despite the very different sensibilities and structures of artist's works, artists were all thrown together by the press under the general heading of 'Happening', following Kaprow's 18 Happenings. Being considered as the root of the Happening 'Expression of Sound'of John Cage was the discovery of the exisiting thing- the Happening. Most artists were to be deeply influenced by Cage's theories and attitudes-that is, his sympathy for Zen Buddihism and oriental philosophy-and by reports of the Black Mountain events. These events would directly reflect contemporary painting and stemmed from the Futurists, Dadaists and Surrealists. And Happening's development background was based on the culture of hippies. Swinging London had been under the sway of psychedelic drugs and utopian visions of 'hippie'wave sweeping in from Califonia. This wave, which affected solid middle-class youth first and formost, began in Haight Ashbury in San Francisco. Without dwelling on the hippie movement here, it is worth nothing that it resulted from the convergence of several undercurrents : consciousness-expending drugs, the anti-Vietnam war developments, the impact of English pop groups on American music and the rise of protest songs, and finally the beatnik tradition of non-conformism. Hippie culture and its pursuit of love, peace and psychedelia was the antitheses of 1960s main street fashion. The media gave everyone with long hair the label of 'hippie', but it was always a very loose collage of attitudes and styles. The rejection of sexual taboos was conveyed by the hippie's refusal to wear. Although the bold exposure of body raised controversies because it went against the existing moral values, it has a significant implications. Psychedelics brought mind-expansion and the possibillity that modern technology (light show, synthesized electronic sounds), new fabrics or colors, and LSD could be utilized to provide an escape route from the dreariness of modern life. During the 1960s, traditional costumes, many of which had never been seen outside their native regions, became sought after and adopted in the West, initially by the young, who wanted to demonstrate their solidarity with cultures uncontaminated by mass industry. The most ardent proponents of such folk costumes were the hippies. Hippies dress was sometimes decribed as 'anti-fashion', produced by a patchwork of ragged cast-offs and flamboyant accessories, of outmoded Western dress and time-honored ethnic garments all combined, modified and permutated into variety of personal statements. 'Flower Power'became a reality. From the results of this study, we can see the expanding trend of the influence and the concept of the sew art genre 'Happening'in the formativeness as well as the fine arts field.

  • PDF