• Title/Summary/Keyword: combined cycle

Search Result 867, Processing Time 0.03 seconds

Analysis of Damage Impact Range according to the NG/NH3 Mixing Ratio when applying Ammonia as Fuel for a Combined Cycle Power Plant using an ALOHA Program (ALOHA 프로그램을 활용한 복합화력발전소 내 암모니아 연료 적용 시 NG/NH3 혼소율에 따른 피해영향범위 분석)

  • Yoo Jeong Choi;Hee Kyung Park;Min Chul Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • In this study, a quantitative risk impact assessment is performed using an ALOHA program to identify the risks when applying ammonia as fuel for combined cycle power plants as one of the solutions of climate change. The worst and the alternative accident scenarios are established for the Sejong combined cycle power plant and the effective ranges are calculated in terms of flammability, thermal radiation, overpressure and toxicity. The analysis results show that the toxic risk is the most critical and the effective distance is highly proportional to the mixing ratio of natural gas and ammonia by showing the Pearson's correlation coefficient over 98% as 0.991, 0.987 and 0.989 for the Level Of Concern(LOC)-1, LOC-2 and LOC-3, respectively. In addition, the coefficients of linearity for LOC-1, LOC-2 and LOC-3 are calculated to 133, 70 and 29, respectively so it can be confirmed that the effective distance increases as the criterion decreases.

A Case of Successful Normal Full Tenn Delivery after Excision of Combined Tubal Pregnancy (난관 내 병합 임신 제거술 후 정상 분만 성공 예)

  • Kim, Eun-Kuk;Chae, Hyun-Ju;Jung, Byeong-Jun
    • Journal of Embryo Transfer
    • /
    • v.25 no.3
    • /
    • pp.161-164
    • /
    • 2010
  • Combined pregnancy occasionally occurs when intrauterine pregnancy is complicated with ectopic pregnancy. The incidence of combined pregnancy is normally rare, but the incidence increases when assisted reproductive technology was conducted for infertility treatment. We had a case of intrauterine pregnancy complicated with tubal pregnancy after IVF-ET cycle was conducted. The tubal pregnancy was removed via pelviscopy, which led to the delivery of healthy offspring at the $39^{th}$ week of pregnancy without additional complication.

Feasibility Study and Optimization of Organic Rankine Cycle to Recover Waste Heat of Marine Diesel Engine (유기 랜킨 사이클을 이용한 선박 주기관 폐열회수 시스템의 적용성과 최적화)

  • Lee, Hoki;Lee, Dongkil;Park, Gunil
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.103-109
    • /
    • 2013
  • The Present work focuses on application of Organic Rankine Cycle - Waste heat Recovery System (ORC-WHRS) for marine diesel engine. ORC and its combined cycle with the engine were simulated and its performance was estimated theoretically under the various engine operation conditions and cooling water conditions. The working fluid, R245fa, was selected for the consideration of the heat source temperature, system efficiency and safety issues. According to the thermodynamic analysis, ~13.1% of system efficiency of the cycle was performed and it is about 4% of the mechanical power output of the considering Marine Diesel Engine. Also, addition of evaporator and pre-heater were studied to maximize output power of Organic Rankine Cycle as a waste heat recovery system of the marine diesel engine.

  • PDF

An evaluation of power conversion systems for land-based nuclear microreactors: Can aeroderivative engines facilitate near-term deployment?

  • Guillen, D.P.;McDaniel, P.J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1482-1494
    • /
    • 2022
  • Power conversion cycles (Subcritical Steam, Supercritical Steam, Open Air Brayton, Recuperated Air Brayton, Combined Cycle, Closed Brayton Supercritical CO2 (sCO2), and Stirling) are evaluated for land-based nuclear microreactors based on technical maturity, system efficiency, size, cost and maintainability, safety implications, and siting considerations. Based upon these criteria, Air Brayton systems were selected for further evaluation. A brief history of the development and applications of Brayton power systems is given, followed by a description of how these thermal-to-electrical energy conversion systems might be integrated with a nuclear microreactor. Modeling is performed for optimized cycles operating at 3 MW(e) with turbine inlet temperatures of 500 ℃, 650 ℃ and 850 ℃, corresponding to: a) sodium fast, b) molten salt or heat pipe, and c) helium or sodium thermal reactors, coupled with three types of Brayton power conversion units (PCUs): 1) simple open-cycle gas turbine, 2) recuperated open-cycle gas turbine, and 3) recuperated and intercooled open-cycle gas turbine. Aeroderivative turboshaft engines employing the simple Brayton cycle and two industrial gas turbine engines employing recuperated air Brayton cycles are also analyzed. These engines offer mature technology that can facilitate near-term deployment with a modest improvement in efficiency.

Engineering Elastic-Plastic Fracture Analysis for Semi-Elliptical Surface Cracked Plates Under Combined Bending and Tension (복합하중을 받는 평판에 존재하는 반타원 표면균열의 공학적 탄소성 파괴해석법)

  • Shim, Do-Jun;Kim, Yun-Jae;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1127-1134
    • /
    • 2002
  • The present paper provides an engineering J estimation equation for surface cracked plates under combined bending and tension. The proposed equation is based on the reference stress approach, and the most relevant normalising loads to define the reference stress for accurate J estimations are given for surface cracked plates under combined bending and tension. Comparisons with J results from extensive 3-D FE analyses, covering a wide range of crack geometry, plate geometry and loading combination, show overall good agreement not only at the deepest point but also at arbitrary points along the crack front. for pure tension, agreement between the estimated J and the FE results is excellent, even at the surface point. On the other hand, for pure bending and combined bending and tension, the estimated J values become less accurate for locations close to the surface point. Thus the results in this paper will be useful to assess short-term fracture or low cycle fatigue of surface defects in plates under combined bending and tension.

Tanner Graph Based Low Complexity Cycle Search Algorithm for Design of Block LDPC Codes (블록 저밀도 패리티 검사 부호 설계를 위한 테너 그래프 기반의 저복잡도 순환 주기 탐색 알고리즘)

  • Myung, Se Chang;Jeon, Ki Jun;Ko, Byung Hoon;Lee, Seong Ro;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.637-642
    • /
    • 2014
  • In this paper, we propose a efficient shift index searching algorithm for design of the block LDPC codes. It is combined with the message-passing based cycle search algorithm and ACE algorithm. We can determine the shift indices by ordering of priority factors which are effect on the LDPC code performance. Using this algorithm, we can construct the LDPC codes with low complexity compare to trellis-based search algorithm and save the memory for storing the parity check matrix.

Pipe Network Analysis for Liquid Rocket Engine with Gas-generator Cycle (액체로켓엔진 가스발생기 사이클의 배관망 해석)

  • Lim, Tae-Kyu;Lee, Sang-Bok;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.52-57
    • /
    • 2012
  • A liquid rocket system consists of a combustion chamber, a gas generator, a turbo pump, and a turbine, etc. Each component is connected by supply components such as valves, pipes, and orifices. Since each component has a combined effect on engine performance, preliminary analysis for overall system must be required before the conceptual design stage. Comprehensive analysis program considered the supply system has not been developed yet. In this paper, a supply component model of the liquid rocket engine has been designed after verification of each component. The gas generator cycle with supply components has been composed. The results of the cycle has been compared to those of the F-1 engine with the representative gas generator cycle.

  • PDF

Applying a Life-Cycle Assessment to the Ultra Pure Water Process of Semiconductor Manufacturing

  • Tien, Shiaw-Wen;Chung, Yi-Chan;Tsai, Chih-Hung;Yang, Yung-Kuang;Wu, Min-Chi
    • International Journal of Quality Innovation
    • /
    • v.6 no.3
    • /
    • pp.173-189
    • /
    • 2005
  • A life-cycle assessment (LCA) is based on the attention given to the environmental protection and concerning the possible impact while producing, making, and consuming products. It includes all environmental concerns and the potential impact of a product's life cycle from raw material procurement, manufacturing, usage, and disposal (that is, from cradle to grave). This study assesses the environmental impact of the ultra pure water process of semiconductor manufacturing by a life-cycle assessment in order to point out the heavy environmental impact process for industry when attempting a balanced point between production and environmental protection. The main purpose of this research is studying the development and application of this technology by setting the ultra pure water of semiconductor manufacturing as a target. We evaluate the environmental impact of the Precoat filter process and the Cation/Anion (C/A) filter process of an ultra pure water manufacturing process. The difference is filter material used produces different water quality and waste material, and has a significant, different environmental influence. Finally, we calculate the cost by engineering economics so as to analyze deeply the minimized environmental impact and suitable process that can be accepted by industry. The structure of this study is mainly combined with a life-cycle assessment by implementing analysis software, using SimaPro as a tool. We clearly understand the environmental impact of ultra pure water of semiconductor used and provide a promotion alternative to the heavy environmental impact items by calculating the environmental impact during a life cycle. At the same time, we specify the cost of reducing the environmental impact by a life-cycle cost analysis.

Attitude Determination GPS/INS Integration System Design Using Triple Difference Technique

  • Oh, Sang-Heon;Hwang, Dong-Hwan;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.615-625
    • /
    • 2012
  • GPS attitude outputs or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS output is applied to the attitude determination GPS/INS (ADGPS/INS) integrated navigation system, the performance of the system can be degraded. This paper proposes an ADGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which the inertial information is combined. Computer simulations and flight test were performed to verify effectiveness of the proposed navigation system. Results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correctly resolved and the cycle slip occurs.

An Analysis of the Preferential Unit Planning Components of High-rise Residential Buildings Across Family Life Cycle Stages (가족생활주기별 아파트 단위주호 계획요소 선호분석)

  • Lee Yeunsook;Lee Hyunjeong;Lee Jeeyoung
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.2 s.49
    • /
    • pp.120-127
    • /
    • 2005
  • The purpose of this study was to examine preferential unit planning components of high-rise residential buildings across family life cycle stages. The questionnaire survey was adopted in this study, and 110 cases were used for data analysis. Based on the age of the oldest child, the family life cycles used in the study were divided into four stages: early childhood, elementary school, adolescence, and adulthood. The findings showed that the preference of the unit planning components across the stages was distinct; families in the stage of early childhood and adolescence had the growing needs for spatial features, and regarded living-related features as important. Families in the stage of adulthood tended to have larger spaces. It was noticed that unit planning components needed to be more differential when the combined effect of both family life cycle stages and housing size was considered.