DOI QR코드

DOI QR Code

Analysis of Damage Impact Range according to the NG/NH3 Mixing Ratio when applying Ammonia as Fuel for a Combined Cycle Power Plant using an ALOHA Program

ALOHA 프로그램을 활용한 복합화력발전소 내 암모니아 연료 적용 시 NG/NH3 혼소율에 따른 피해영향범위 분석

  • Yoo Jeong Choi (Dept. of Safety Engineering, Incheon National University) ;
  • Hee Kyung Park (Dept. of Safety Engineering, Incheon National University) ;
  • Min Chul Lee (Dept. of Safety Engineering, Incheon National University)
  • 최유정 (인천대학교 안전공학과) ;
  • 박희경 (인천대학교 안전공학과) ;
  • 이민철 (인천대학교 안전공학과)
  • Received : 2024.02.02
  • Accepted : 2024.03.26
  • Published : 2024.03.31

Abstract

In this study, a quantitative risk impact assessment is performed using an ALOHA program to identify the risks when applying ammonia as fuel for combined cycle power plants as one of the solutions of climate change. The worst and the alternative accident scenarios are established for the Sejong combined cycle power plant and the effective ranges are calculated in terms of flammability, thermal radiation, overpressure and toxicity. The analysis results show that the toxic risk is the most critical and the effective distance is highly proportional to the mixing ratio of natural gas and ammonia by showing the Pearson's correlation coefficient over 98% as 0.991, 0.987 and 0.989 for the Level Of Concern(LOC)-1, LOC-2 and LOC-3, respectively. In addition, the coefficients of linearity for LOC-1, LOC-2 and LOC-3 are calculated to 133, 70 and 29, respectively so it can be confirmed that the effective distance increases as the criterion decreases.

본 연구에서는 기후변화 해결책 중 하나인 천연가스 복합화력발전소를 암모니아로 연료 전환 시 위험성을 파악하기 위해 ALOHA 전산 해석 프로그램을 이용하여 정량적 사고피해영향평가를 실시하였다. 국내 세종복합화력발전소를 대상으로 최악 및 대안의 사고 시나리오를 수립하고, 인화성, 복사열, 과압, 독성의 위험 요인에 대해 영향 범위를 산출한 결과, 암모니아 확산에 의한 독성 위험성이 가장 크게 나타났다. 특히, 천연가스-암모니아 혼소율에 따른 사고피해영향평가 분석 결과, 암모니아 저장 및 이송시스템으로부터 누출로 인한 독성의 피해 영향은 선형적 비례의 관계에 있음을 확인하였다. 정량적으로는 피어슨 상관계수가 LOC-1, LOC-2, LOC-3이 각각 0.991, 0.987, 0.989로 98% 이상의 높은 값을 나타냈으며, 선형계수는 LOC-1, LOC-2, LOC-3이 각각 133, 70, 29로 낮은 농도 기준일수록 암모니아 혼합 비율에 따른 피해 영향이 증가함을 확인하였다.

Keywords

Acknowledgement

본 연구는 한국전력공사의 2022년 착수 기초연구개발 과제 연구비 지원으로 수행되었으며, 지원에 감사를 드립니다. (과제번호 : R22XO02-06) 또한 이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(00236869, 300MW급(H급) 가스터빈 50% 수소혼소 변환 기술개발 및 실증)

References

  1. 한국에너지기술연구원, 탄소중립 연료: 암모니아 정책 및 산업 동향, p. 0.7, (2021)
  2. Kim, D. S., "Review on the Development Trend of Hydrogen Gas Turbine Combustion Technology", J. Korean Soc. Combust., 24(4), 1-10, (2019) https://doi.org/10.15231/jksc.2019.24.4.001
  3. Okafor, E. C., Somarathne, K. D. K. A., Ratthanan, R., Hayakawa, A., Kudo, T., Kurata, O., Iki, N., Tsujimura, T., Furutani, H., Kobayashi, H., "Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia", Combustion and Flame, 211, 406-416, (2020) https://doi.org/10.1016/j.combustflame.2019.10.012
  4. Woo, K. T., Kim, B. G., So, Y. S., Baek, M. S., Park, S. S., Jung, H. J., "Analysis of CO2 Emission and Effective CO2 Capture Technology in the Hydrogen Production Process", KIGAS, 27(3), 77-83, (2023)
  5. Jang, D. J., Kim, S. Y. and Lee, M. C., "Property based Quantitative Risk Assessment of Hydrogen", Trans. Korean Society of Mechanical Engineers., 46(2), 103-114, (2022) https://doi.org/10.3795/KSME-B.2022.46.2.103
  6. Jeong, S. Y., Jang, D. J. and Lee, M. C., "Property-based quantitative risk assessment of hydrogen, ammonia, methane, and propane considering explosion, combustion, toxicity, and environmental impacts", Journal of Energy Storage, 54(1), 1-11, (2021) https://doi.org/10.1016/j.est.2022.105344
  7. Dias, V., Pochet, M., Contino, F. and Jeanmart, D., "Energy and Economic Costs of Chemical Storage", Frontiers in Mechanical Engineering, 6( 21), 1-17, (2020) https://doi.org/10.3389/fmech.2020.00001
  8. Jeong, S. Y., Park, H. K., Lee, M. C., "Accident Impact Assessment Using the ALOHA Program for the Application of Hydrogen and Ammonia as Fuels of a Combined Cycle Power Plant", Trans. Korean Soc. Mech. Eng. B, 47(12), 647-661, (2023) https://doi.org/10.3795/KSME-B.2023.47.12.647
  9. Park, H. K., Lee, M. C., "Consequence Analysis on the Leakage Accident of Hydrogen Fuel in a Combined Cycle Power Plant: Based on the Effect of Regional Environmental Features", Journal of Hydrogen and New Energy, 34(6), 698-711, (2023) https://doi.org/10.7316/JHNE.2023.34.6.698
  10. Jang, Y. H., Park, C. W., Kim, Y. R., Choi, Y., Min, C. K., Lee, S. W., Baek, H. K., Lee, J. W., "Comparison of Combustion, Emissions and Efficiency Characteristics as Varying Spark Timings and Excess air ratios in an Ammonia-fueled Direct Injection Spark Ignition Engine", KIGAS, 27(3), 1-10, (2023)
  11. Kim, S. I., Kwak, H. G., Yang, W., "Process Simulation of the Effect of Ammonia Co-firing on the Supercritical Boiler System for Reduction of Greenhouse Gas", J. Korean Soc. Combust., 26(4), 1-12, (2021) https://doi.org/10.15231/jksc.2021.26.4.001
  12. Lee, H. K., Woo, Y. M., Lee, M. J., "The Needs for R&D of Ammonia Combustion Technology for Carbon Neutrality - Part II R&D Trends and Technical Feasibility Analysis", J. Korean Soc. Combust., 26(1), 84-106, (2021) https://doi.org/10.15231/jksc.2021.26.1.084
  13. Kim, J. H., Jung, S. H., "Offsite Consequence Modeling for Evacuation Distances against Accidental Hydrogen Fluoride (HF) Release Scenarios", Korean Chem. Eng. Res., 54(4), 582-585, (2016) https://doi.org/10.9713/kcer.2016.54.4.582
  14. R. Jones, W. Lehr, D. Simecek-Beatty, and R. M. Reynolds, ALOHA® (areal locations of hazardous atmospheres) 5.4. 4: tech, National Oceanic and Atmospheric Administration, (2013)
  15. R. M. Reynolds, ALOHATM (areal locations of hazardous atmospheres) 5.0: theoretical description, National Oceanic and Atmospheric Administration, (1992)
  16. T. E. Son and E. J. Lee, "Dispersion model of initial consequence analysis for instantaneous chemical release", Journal of the Korean Society of Safety, 37(2), 1-9, (2022)
  17. Yoon, S. K., Yu, J. Y., Han, J. Y., Jung, S. H., "Risk Analysis of Transporting Hazardous Substances in Harbor Using Modeling Program", Journal of Ocean Engineering and Technology, 32(4), 272-278, (2018) https://doi.org/10.26748/KSOE.2018.6.32.4.272
  18. 유해화학물질관리법 제 2조 6항
  19. Kim, H. S., Jeon, B. H., "A Study on Development of Damage Impact Distance Calculation Formula to Determine Evacuation and Notification of Residents in Case of Ammonia Release Accident", Journal of the Korea Academia-Industrial cooperation Society, 21(10), 308-316, (2020) https://doi.org/10.5762/KAIS.2020.21.10.308
  20. Yoo, B. T., Moon, M. H., "Development of Emergency Response Plan for Chemical Accident Using ALOHA Program: Focusing on Evacuation Plan", J. Korean Soc. Hazard Mitig., 18(3), 311-319, (2018) https://doi.org/10.9798/KOSHAM.2018.18.3.311
  21. 한국산업안전보건공단, 물질안전보건자료, CAS_No. 7664-41-7
  22. Jeong, Y. S., Woo, I. S., Lim, J. W., "Risk Management for Ammonia Unloading and Storage Tank Facility", Journal of the Korean Institute of Gas, 21(5), 95-103, (2017) https://doi.org/10.7842/KIGAS.2017.21.5.95
  23. ISKENDER, H., HAZOP and ALOHA Analysis of Acetone, 4th International Symposium on Natural Hazards and Disaster Management, (2020)
  24. 한국산업안전보건공단, KOSHA GUIDE P-110 화학공장의 피해최소화대책 수립에 관한 기술 지침, (2023)
  25. 한국산업안전보건공단, KOSHA GUIDE P-107 최악 및 대안의 누출 시나리오 선정에 관한 기술 지침, (2020)
  26. 화학물질안전원, 제2021-3호 사고시나리오 선정 및 위험도 분석에 관한 기술지침, (2016)
  27. Jeong, G. S., Baik, E. S., "Damage Effects Modeling by Chlorine Leaks of Chemical Plants", Fire Sci. Eng., 32(3), 76-87, (2018) https://doi.org/10.7731/KIFSE.2018.32.3.076
  28. Park, K. S., "Offsite Risk Assessment on Chloric Acid Release", Korean Chem. Eng. Res., 54(6), 781-785, (2016) https://doi.org/10.9713/kcer.2016.54.6.781
  29. ALXA XL, Property Risk Consulting Guidelines
  30. 한국산업안전보건공단, KOSHA GUIDE P-102 사고 피해예측 기법에 관한 기술지침, (2021)
  31. AIHA Guideline Foundation, "2013 ERPG/WEEL Handbook", AIHA (2013)
  32. Lim, H. J., Kwak, S. L., Jung, J. H., Ryu, T. K., Choi W. S., Lee, J. E., Lee, J. S., Lee, Y. H., Kim, J. K., Yoon, J. H., Ryu, J. S., "A Study on the Factors Affecting the Influence Ranges of Ammonia Leakage by Using KORA Program", KIGAS, 22(3), 38-44, (2018)
  33. Hwang, W. Y., "A Study on the Prediction of Damage Ranges by Leakages of Seaport-Stored Substances", J. Korean Soc. Hazard Mitig., 21(2), 23-31, (2021) https://doi.org/10.9798/KOSHAM.2021.21.2.23