• 제목/요약/키워드: combinatorial optimization problem

검색결과 200건 처리시간 0.026초

퍼지로직제어에 의해 강화된 혼합유전 알고리듬 (Hybrid Genetic Algorithm Reinforced by Fuzzy Logic Controller)

  • 윤영수
    • 대한산업공학회지
    • /
    • 제28권1호
    • /
    • pp.76-86
    • /
    • 2002
  • In this paper, we suggest a hybrid genetic algorithm reinforced by a fuzzy logic controller (flc-HGA) to overcome weaknesses of conventional genetic algorithms: the problem of parameter fine-tuning, the lack of local search ability, and the convergence speed in searching process. In the proposed flc-HGA, a fuzzy logic controller is used to adaptively regulate the fine-tuning structure of genetic algorithm (GA) parameters and a local search technique is applied to find a better solution in GA loop. In numerical examples, we apply the proposed algorithm to a simple test problem and two complex combinatorial optimization problems. Experiment results show that the proposed algorithm outperforms conventional GAs and heuristics.

A Novel Binary Ant Colony Optimization: Application to the Unit Commitment Problem of Power Systems

  • Jang, Se-Hwan;Roh, Jae-Hyung;Kim, Wook;Sherpa, Tenzi;Kim, Jin-Ho;Park, Jong-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.174-181
    • /
    • 2011
  • This paper proposes a novel binary ant colony optimization (NBACO) method. The proposed NBACO is based on the concept and principles of ant colony optimization (ACO), and developed to solve the binary and combinatorial optimization problems. The concept of conventional ACO is similar to Heuristic Dynamic Programming. Thereby ACO has the merit that it can consider all possible solution sets, but also has the demerit that it may need a big memory space and a long execution time to solve a large problem. To reduce this demerit, the NBACO adopts the state probability matrix and the pheromone intensity matrix. And the NBACO presents new updating rule for local and global search. The proposed NBACO is applied to test power systems of up to 100-unit along with 24-hour load demands.

배전계통 커패시터 설치를 위한 전역적 최적화 기법 (A Global Optimization Technique for the Capacitor Placement in Distribution Systems)

  • 이상봉;김규호;이상근
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.748-754
    • /
    • 2008
  • The general capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. In this paper, a global optimization technique, which employing the chaos search algorithm, is applied to solve optimal capacitor placement problem with reducing computational effort and enhancing global optimality of the solution. Chaos method in optimization problem searches the global optimal solution on the regularity of chaotic motions and easily escapes from local or near optimal solution than stochastic optimization algorithms. The chaos optimization method is tested on 9 buses and 69 buses system to illustrate the effectiveness of the proposed method.

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems

  • Gen, Mitsuo;Lin, Lin
    • Industrial Engineering and Management Systems
    • /
    • 제11권4호
    • /
    • pp.310-330
    • /
    • 2012
  • Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufacturing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assignment mechanism and performance measures for solving multiple objective optimization problems, and four crucial issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manufacturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models and integrated systems for manufacturing.

Optimization by Simulated Catalytic Reaction: Application to Graph Bisection

  • Kim, Yong-Hyuk;Kang, Seok-Joong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2162-2176
    • /
    • 2018
  • Chemical reactions have an intricate relationship with the search for better-quality neighborhood solutions to optimization problems. A catalytic reaction for chemical reactions provides a clue and a framework to solve complicated optimization problems. The application of a catalytic reaction reveals new information hidden in the optimization problem and provides a non-intuitive perspective. This paper proposes a new simulated catalytic reaction method for search in optimization problems. In the experiments using this method, significantly improved results are obtained in almost all graphs tested by applying to a graph bisection problem, which is a representative problem of combinatorial optimization problems.

유전 알고리즘을 활용한 무인기의 다중 임무 계획 최적화 (Multi-mission Scheduling Optimization of UAV Using Genetic Algorithm)

  • 박지훈;민찬오;이대우;장우혁
    • 한국항공운항학회지
    • /
    • 제26권2호
    • /
    • pp.54-60
    • /
    • 2018
  • This paper contains the multi-mission scheduling optimization of UAV within a given operating time. Mission scheduling optimization problem is one of combinatorial optimization, and it has been shown to be NP-hard(non-deterministic polynomial-time hardness). In this problem, as the size of the problem increases, the computation time increases dramatically. So, we applied the genetic algorithm to this problem. For the application, we set the mission scenario, objective function, and constraints, and then, performed simulation with MATLAB. After 1000 case simulation, we evaluate the optimality and computing time in comparison with global optimum from MILP(Mixed Integer Linear Programming).

시뮬레이티드 어닐링 알고리즘을 이용한 유연생산시스템의 기계셀-부품군 형성에 관한 연구 (A Study of Formation of Machine Cell-Part Family in FMS using the Simulated Annealing Algorithm)

  • 김진용;박대극;오병완;홍성조;최진영
    • 산업공학
    • /
    • 제10권2호
    • /
    • pp.1-13
    • /
    • 1997
  • The problem of the formation of machine-part cells in FMS is a very important issue at the planning and operating stages of FMS. This problem is inherently a combinatorial optimization problem, proven to be NP-complete(or, NP-hard). Among the several kinds of approaches which have been applied to solve the combinatorial optimization problems, the Simulated Annealing(SA) algorithm, a technique of random search type with a flexibility in generating alternatives, is a powerful problem solving tool. In this paper, the SA algorithm is used to solve machine cell-part family formation problems. The primary purpose of the study is to find the near-optimal solution of machine cell-part family formation problem, whare the product volume and number of operations are prespecified, that can minimize the total material handling cost caused by exceptional elements and intercell moves as much as possible. The results show that the SA algorithm is able to find a near-optimal solution for practical problems of the machine cell-part family formation.

  • PDF

SA-selection-based Genetic Algorithm for the Design of Fuzzy Controller

  • Han Chang-Wook;Park Jung-Il
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.236-243
    • /
    • 2005
  • This paper presents a new stochastic approach for solving combinatorial optimization problems by using a new selection method, i.e. SA-selection, in genetic algorithm (GA). This approach combines GA with simulated annealing (SA) to improve the performance of GA. GA and SA have complementary strengths and weaknesses. While GA explores the search space by means of population of search points, it suffers from poor convergence properties. SA, by contrast, has good convergence properties, but it cannot explore the search space by means of population. However, SA does employ a completely local selection strategy where the current candidate and the new modification are evaluated and compared. To verify the effectiveness of the proposed method, the optimization of a fuzzy controller for balancing an inverted pendulum on a cart is considered.

방사상 배전계통의 커패시터 설치를 위한 카오스 탐색알고리즘 (Capacitor Placement in Radial Distribution Systems Using Chaotic Search Algorithm)

  • 이상봉;김규호;유석구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.124-126
    • /
    • 2002
  • The general capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. In this paper, the method employing the chaos search algorithm is proposed to solve optimal capacitor placement problem with reducing computational effort and enhancing optimality of the solution. Chaos method in optimization problem searches the global optimal solution on the regularity of chaotic motions and easily escapes from local or near optimal solution than stochastic optimization algorithms. The chaos optimization method is tested on 9 buses and 69 buses system to illustrate the effectiveness of the proposed method.

  • PDF

Graph coloring problem solving by calculations at the DNA level with operating on plasmids

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.49.3-49
    • /
    • 2001
  • In 1994 Adelman´s pioneer work demonstrated that deoxyribonucleic acid (DNA) could be used as a medium for computation to solve mathematical problems. He described the use of DNA based computational approach to solve the Hamiltonian Path Problem (HPP). Since then a number of combinatorial problems have been analyzed by DNA computation approaches including, for example: Maximum Independent Set (MIS), Maximal Clique and Satisfaction (SAT) Problems. In the present paper we propose a method of solving another classic combinatorial optimization problem - the eraph Coloring Problem (GCP), using specifically designed circular DNA plasmids as a computation tool. The task of the analysis is to color the graph so that no two nodes ...

  • PDF