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Abstract 

 
Chemical reactions have an intricate relationship with the search for better-quality 
neighborhood solutions to optimization problems. A catalytic reaction for chemical reactions 
provides a clue and a framework to solve complicated optimization problems. The application 
of a catalytic reaction reveals new information hidden in the optimization problem and 
provides a non-intuitive perspective. This paper proposes a new simulated catalytic reaction 
method for search in optimization problems. In the experiments using this method, 
significantly improved results are obtained in almost all graphs tested by applying to a graph 
bisection problem, which is a representative problem of combinatorial optimization problems. 
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1. Introduction 

Optimization is one of the major fields of computer science, and many studies have been 
conducted to obtain realistic solutions to optimization problems, which for a long time have 
been generally difficult to solve. Natural world phenomena have been successfully imitated 
for use in some specific computing applications. For example, simulated annealing (SA) [1] 
and large-step Markov chain (LSMC) [2] methods that mimic annealing in physics and 
evolutionary computation (e.g., genetic algorithms [3]) that imitate biological evolution have 
been successfully implemented over the past 30 years and are still being actively researched. 
These methods are all iterative search methods that operate by improving the state of the 
solution, and they have the unique ability to search for attractive solution spaces that have 
never been found before. Rather than attempting to directly address the limitations of the 
current state, these methods are based on probabilistic techniques to search for a new area. 

When using iterative search methods, it is easy to fall into a local optimum that is better than 
neighboring solutions rather than moving states, and the ability to overcome this problem 
determines the performance of the search algorithm. Once falling into the local optimum, it is 
not easy to move to a better state because the ‘cluster’ becomes the 'barrier' of the state. 
Resolving cluster obstacles requires a fairly large 'energy' to naturally overcome the barrier.  

Overcoming the barrier and shifting the state from the local optimum to a better solution is 
similar to overcoming energy thresholds in chemical reactions. If the energy does not increase 
above the threshold, the chemical reaction never occurs. By lowering the threshold using a 
catalyst, it is easier to cause a reaction. This study proposes a search method that simulates a 
catalytic reaction to implement a search technique mimicking a catalytic reaction. By lowering 
the energy threshold, it is possible to naturally move between clusters. The proposed method is 
applied to a graph bisection problem, which is a representative problem of combinatorial 
optimizations, and the results were greatly improved. 

The contributions of this paper are as follows: 
- Proposal of a novel search method that mimics a catalytic reaction. 
- Application of the proposed method to the graph bisection problem and deriving favorable  
results. 

The remainder of this paper is as follows. Section 2 presents the simulated catalytic reaction 
method proposed in this paper. Section 3 introduces the graph bisection problem, which is a 
test problem for the proposed method, and describes our experiments. Finally, the conclusion 
is discussed in Section 4. 

2. Simulated Catalytic Reaction 
Fig. 1 shows a common hill-climbing state search process. From the initial state, the method 
moves to a better neighboring state, and this process is repeated until there is no further 
improvement. If there is no better neighbor, the search is terminated, and this final solution 
becomes a local optimum. SA [1], which mimics its namesake phenomenon in physics, is a 
technique that opens the possibility of moving to a worse neighbor by using the concept of 
temperature. This section proposes a new technique to overcome the local optimum by moving 
to a better state. This technique is designed by mimicking chemical reactions. 
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Fig. 1. Common state search process (hill climbing) 
 
 

 
Fig. 2. Catalytic reaction in chemistry 

 
Fig. 2 shows the catalytic reaction process in chemistry. Reactants use a catalyst to lower 

the energy threshold in situations where much energy is needed to make products, and the 
reaction can occur more easily when the energy threshold is lowered. Fig. 3 shows a simulated 
catalytic reaction process. To overcome the local optimum and advance to a better solution, 
the 'energy threshold' is lowered using a catalyst-like relaxed gain. The energy threshold in the 
search corresponds to the minimization objective. Even if the quality of the solution 
deteriorates, it must be overcome to achieve a global optimum. By changing the state 
transition in the gain-based method by relaxed gain, it increases the possibility of movement to 
the global optimum. 

Fig. 4 shows the search method combined with the simulated catalytic reaction proposed in 
this paper. The search is divided into three stages. The first step is to find a 'cluster' that 
corresponds to the barrier of the search from the local optima, which is difficult to improve in  

Let s ← a random initial state; 
do 

Pick a random neighbor of s, snew ← neighbor(s); 
if s is better than snew, then s ← snew; 

until (there is no improvement) 
return the final state s; 
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                                           Fig. 3. Simulated catalytic reaction in search 

 
a conventional way. This step can be specified only when the problem to be solved is 
determined, and various methods can be applied. The second step weakens the connectivity in 
the cluster to move clusters, and then it uses the relaxed gain based on this to lower the 'energy 
threshold' to perform the search. The design of the relaxed gain that weakens the connectivity 
in the cluster can be specified only when the problem that is to be solved has been determined. 
The final step is shown in Fig. 1, which stabilizes the unstable reaction. If more searches are 
necessary, then the last two steps can be repeated. 
 

Fig. 4. Search with simulated catalytic reaction 
 

Let s ← a random initial state; 
Find barriers from local optima; // step of finding barriers 
do // step of simulated catalytic reaction 

Pick a random neighbor of s, snew ← neighbor(s); 
if s is better than snew in a distorted space with relaxed gain, then s ← snew; 

until (there is no improvement) 
do // step of general hill climbing 

Pick a random neighbor of s, snew ← neighbor(s); 
if s is better than snew in the original space, then s ← snew; 

until (there is no improvement) 
return the final state s; 
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 3. Combinatorial Optimization and Test Problem 

3.1 Combinatorial Optimization 
Most research in combinatorial optimization is aimed at efficiently finding the maximum or 
minimum value of a function with many independent variables. This function is usually called 
a cost function or an objective function and is a quantitative measure of the "goodness" of a 
complex system. The cost function relates to the detailed configuration of the system and is 
related to optimization problems that arise from the physical design of the particular computer 
system. However, most combinatorial optimization problems that are of real interest belong to 
the NP-complete problem [4], which means that it is quite difficult to obtain the optimal 
solution within a limited time. So far, interest has focused on designing heuristic methods with 
a low computational complexity. 

Heuristic methods generally yield reasonable solutions within a realistic time frame, but this 
method is problem-specific and cannot guarantee the optimal solution. The next section 
discusses the graph bisection problem, which is a representative combinatorial, NP-complete 
optimization problem (i.e., NP-hard problem). This problem is also an optimization problem 
that occurs in VLSI circuit design. 

3.2 Graph Bisection and Testbed 
Let G = (V, E) be an unweighted, undirected graph, where V is a set of nodes and E is a set of 
edges. The bisection {V1, V2} of graph G satisfies the following conditions: V1 and V2 are 
subsets of V with no overlap, and the union of the two sets is equal to the whole set V. Also, the 
difference in cardinality between the two sets is less than or equal to one. The cut size of the 
bisection {V1, V2} is defined by the number of edges that span the two sets. The problem of 
finding a bisection with a minimum cut size is called the graph bisection problem. Formally, 
the cut size of the bisection {V1, V2} is defined as follows: |{(v, w) ∈ E: v ∈ V1 and w ∈ V2}|, 
where V1 ⊂ V , V2 ⊂ V , V1⋃V2 = V , V1⋂V2 = ∅ , and �|V1| − |V2|� = 1 . This problem is 
NP-hard for general graphs [4], meaning that the polynomial time algorithm that solves this 
problem is not present in current technology. In other words, finding the optimal solution of 
the graph bisection problem is a very difficult task. At present, designing approximate or 
heuristic algorithms that solve the problem is the only solution. There are also various 
meta-heuristic approaches to solving the graph bisection, including genetic algorithms [5,6,7] 
and tabu search [8,9]. Kim et al. [10] present a survey of techniques using genetic algorithms. 

When two bisections are different in one or two nodes, they are referred to as neighbors. For 
each bisection, there are O(|V|2) neighbors associated with a single node move. The gain of a 
node is calculated as the amount reduction in the cut size obtained when it moves from the 
current node subset to the opposite. In a pure random walk, all connections have the same 
transition probability. However, in the gain-based search algorithm, only transitions with a 
positive gain value have non-zero transition probabilities. In a typical graph, this algorithm 
can never reach the optimal solution. In this paper, to overcome this disadvantage by changing 
the transition probability by momentarily relaxing the gain value. Random perturbation could 
be a simple solution to this problem, but it is difficult to present a "correct direction". The 
rational and natural directions for perturbation are presented in the following sections. 

The experiments are conducted on well-known benchmark graphs used in numerous studies 
[5,6,8,11,12,13,14,15,16,17]. The proposed algorithm is applied to 28 well-known graphs [6]. 
The number of nodes in the graphs tested ranged from 350 to 5,200. All benchmark graphs are 
available at http://soar.snu.ac.kr/benchmark. A detailed description of the graph is shown 

http://soar.snu.ac.kr/benchmark
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below.  
- Un.d: a random geometric graph with n nodes and an average degree of each node to 

be d. The nodes are arbitrarily placed in the unit rectangle, and an edge is present 
between nodes having an Euclidean distance of t or less. The value of d is πnt2. 

- breg.n.d: a random regular graph with n nodes and the degree of each node to be 3. 
Optimal bisection cut size is b. 

- cat.n: a caterpillar graph with n nodes. Nodes are placed in spline, and each node has 
6 legs. The bisection cut size of all used caterpillar graphs is 1. 

- w-grid.n.d:  Grid graph with donut shape without boundary with n nodes. The optimal 
bisection cut size is b. 

 

3.3 Clustering Method 
 

Fig. 5. An example of a cluster 
 
In general, a cluster is a subgraph with a high density of linkages. Fig. 5 shows an example of 
a 5-node cluster. Let us define the gain of the node or cluster as the reduction in cut size when 
the node or cluster moves to the opposite side. Then, the gain of the cluster in Fig. 5 is +4, but 
the gain of all nodes in the cluster is negative. This example shows that it is very difficult to 
move a cluster by moving one node at a time. 

Graph clustering is used to reduce the search space. For example, clustering could improve 
the Fiduccia-Mattheyses (FM) algorithm [18] using a two-step methodology [19,20]. The 
clustering method used in this paper is shown in Figs. 6 and 7. This paper does not focus on 
suggesting a clustering method with superior performance. Hwang and Kim [7] and Yoon and 
Kim [21] described recent clustering methodologies. Instead, the simple clustering method 
proposed by Kim [22] is used in this paper. In this method, the cluster is defined as a strongly 
correlated subgraph with respect to local optimization. In other words, all nodes in the cluster 
have almost always belonged to the same partition in the local optima. One solution to the 
graph bisection problem is expressed as |V| bit code. Each bit corresponds to a node in the  
graph. If a node belongs to V1 in the partition, it has a value of 0, and if it belongs to V2, it has 
a value of 1. 
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Fig. 6.  Example process of the used clustering 
 
Clustering proceeds as follows: First, k local optima are collected. Then, k|V| bit code is 

obtained, and each node has k-bit binary string information. If the k-bit binary strings of the 
two nodes are the same, there is strong evidence that a cluster is present, and the nodes are 
considered to be included in the cluster. The clustering method used searches for nodes with 
the same k-bit binary string using a depth-first search to extract the node subset. Fig. 6 shows 
an example of the execution result of the clustering used. Also, Fig. 7 shows the pseudo-code  

Fig. 7.  The clustering method used [22] 
 

of the clustering method used. In this experiment, k was 50. Each node can be selected exactly 
once. Assuming that the maximum node degree is constant, the time complexity of the 
clustering method used is O(|V|). Two-stage FM with this clustering improved the FM 

 
(a) G=(V,E) 

 
(b) Finding local optima (c) Clustering with (b) 

Get m local optima l1, l2, . . . , lm,  
where lk = (lk1, lk2, . . . , lk|V|) for each k = 1, 2, …, m; 

Get a string code α = (α1, α2, . . . , α|V|) by setting 
αi ← (l1i, l2i, . . . , lmi) for each i = 1, 2, …, |V|; 

W ← V; 
do 

Choose a vertex v in W; 
Find a cluster C including v through a depth-first search, 

i.e., C ← the set of vertices in W with the same binary string as αv in α; 

if |C| > 1, then W ← W\C; 

else W ← W\{v}; 
until (W is empty) 
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significantly [22], indicating that it effectively detected the cluster. 
Table 1 shows the cluster information obtained from the graph used in this paper. There are 

differences in the size and number of clusters according to the graph. Except for one graph 
(w-grid100.20), the average cluster size ranges from 2 to 500. Depending on the cluster size, 
the search performance will also be affected. 
 

Table 1. Cluster information of tested graphs 
Graph name #nodes Ave. cluster size #clusters 

U500.05 500 5.82 79 
U500.10 500 8.91 53 
U500.20 500 11.12 41 
U500.40 500 45.27 11 
U1000.05 1000 6.30 149 
U1000.10 1000 9.17 102 
U1000.20 1000 12.21 77 
U1000.40 1000 20.29 48 
U2000.05 2000 6.07 311 
U2000.10 2000 8.89 213 
U5000.05 5000 6.31 752 
U5000.10 5000 10.03 474 
breg500.0 500 45.45 11 
breg500.12 500 9.00 49 
breg500.16 500 9.62 45 
breg500.20 500 6.59 64 
breg5000.0 5000 500.00 10 
breg5000.4 5000 81.80 61 
breg5000.8 5000 94.02 53 
breg5000.16 5000 56.48 88 
cat.352 352 4.80 50 
cat.702 702 4.73 100 
cat.1052 1052 5.01 150 
cat.5252 5252 5.99 750 
w-grid100.20 100 N.A. 0 
w-grid500.42 500 2.08 61 
w-grid1000.40 1000 7.73 127 

w-grid5000.100 5000 10.97 453 
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3.4 Barrier Avoidance 

Fig. 8. Cluster moving by simulated catalytic reaction 
 

 
(a) Initial state with catalyst (b) First move 

(c) Second move (d) Third move 

(e) Fourth move (f) Removed catalyst 

 
(g) Final stable state 
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If a group of nodes has a strong connection to one another and consequently has a strong 
pattern in the local optima, moving one node at a time will make it very difficult to break the 
pattern. This is due to the strong nature of the pattern not to be broken, and it requires a very 
large perturbation ("energy") to break it. The clusters mentioned in the previous section have 
this kind of pattern, and moving an entire cluster directly seems to be able to solve the problem 
of falling into local optima, but this is a very unnatural way. This approach does not only result 
in a lack of confidence in the pattern, but it also does not take into account the constraint of 
balancing the two sets of nodes that make up the bisection. In this study, a new method is used 
to relax the gain instantly by weakening the connection in the group of nodes found in the 
cluster and breaks the pattern naturally. (Weakened to half the level in our actual experiments). 
It is a way to overcome the barrier naturally, not too far from the "right direction" of the search. 

When the SCR of FM was applied to the graph bisection problem, the cost function of the 
bisection {V1, V2} is formally defined as follows: |{(v, w) ∈ E: v ∈ V1, w ∈ V2, and {v, w} ⊈
C}| +  ρ|{(v, w) ∈ E: v ∈ V1, w ∈ V2, and {v, w} ⊆ C}| , where C ⊆ V  is a cluster and 
0 ≤  ρ < 1. Fig. 8 shows an example that the cluster composed of 5 nodes in Fig. 5 can be 
moved to the opposite side by a simulated catalytic reaction. The connectivity in the cluster 
has been changed to 1/4 level using the virtual catalyst (Fig. 8(a)). As a result, most of the 
relaxed gain values of the nodes in the cluster are positive (+0.5 or higher, except for the 
leftmost node). This reduces the energy required to move the cluster, and allows the nodes in 
the cluster to move one-by-one to the opposite side (Figs. 8(b) - (e)). The last one node in the 
cluster cannot move because the relaxed gain is negative (Fig. 8(e)), but it will move when the 
original gain is restored (Fig. 8(f)). Eventually the entire cluster can move. (Fig. 8(g)). 

 

Fig. 9. Pseudo-code of the Fiduccia-Mattheyses algorithm [18] 
 

3.5 Experiments 
3.5.1 Experimental Setting and Basic Search 

 
The experiment was conducted on the 28 benchmark graphs mentioned in Section 3.2. The 

do 
Compute gain gv for each v ∈ V; 
Make gain lists of gvs; 
M ← empty set; 

for i ← 1 to | V | −1 

Choose vi ∈ V − M such that gvi is maximal and 
the move of vi does not violate the balance criterion; 

M ← M ∪ {vi}; 

for each v ∈ V − M adjacent to vi 
Update its gain gv and adjust the gain list; 

Choose k ∈ {1, 2, … , |V| −1} that maximizes Σ i=1..k gvi ; 
Move all the vertices in the subset {v1, v2, …, vk} to their opposite sides; 

until (there is no improvement) 



2172                                           Yong-Hyuk Kim et al.: Optimization by Simulated Catalytic Reaction: Application to Graph Bisection 

CPU used was an Intel (R) Core (TM) i5 CPU 760, 2.80GHz, and the testing program was 
written in the C language. The Fiduccia-Mattheyses (FM) algorithm was used as a basic search 
algorithm and was improved by using the simulated catalytic reaction method presented in 
Section 2. The FM algorithm is a representative iterative improvement algorithm, and further 
details are as follows. 

For nearly 35 years, the Kernighan-Lin (KL) algorithm [23] has been used as a benchmark 
algorithm for graph partitioning. Fiduccia and Matteyses [18] proposed a linear time algorithm 
that improved the KL algorithm. They were able to significantly reduce the time per pass while 
pursuing a bisection with some imbalance. The FM algorithm as well as the KL algorithm are 
traditional iterative improvement algorithms. The FM algorithm improves the initial solution 
by moving the nodes one by one. The KL algorithm, on the other hand, improves the solution 
by swapping the node pairs. Fig. 9 shows the pseudo-code of the FM algorithm. The FM 
algorithm performs a series of passes. It moves every node in each pass, and the best solution 
during the present pass becomes the initial solution of the next pass. This algorithm terminates  

 
Table 2. Experimental results of the FM algorithm and its corresponding SCR search 

Graph name FM algorithm [18] 
Best/Ave/SD1 

Time2 
(ms) 

SCR of FM 
Best/Ave/SD1 

Time2 
(ms) 

t-test 
p-value 

U500.05 8/38.33/9.77 0.3 5/24.73/8.61 0.6 1.3e-162 
U500.10 26/90.72/27.70 0.4 26/56.90/20.24 1.1 6.6e-150 
U500.20 178/223.09/39.57 0.7 178/198.95/20.15 1.8 1.6e-58 
U500.40 412/435.32/56.58 1.0 412/416.31/19.32 2.6 5.0e-23 
U1000.05 26/74.81/15.68 0.7 15/47.73/13.03 1.5 2.5e-223 
U1000.10 55/160.56/46.27 1.2 39/98.41/32.50 2.7 1.7e-174 
U1000.20 222/316.42/69.69 1.9 222/274.49/40.80 4.4 4.0e-54 
U1000.40 737/860.68/132.33 2.6 737/788.50/84.09 6.8 5.5e-44 
U2000.05 82/161.37/24.95 1.5 39/102.97/19.56 3.3 0.0e-∞ 
U2000.10 119/344.12/73.78 2.7 72/228.34/61.12 6.0 5.2e-198 
U5000.05 252/438.52/47.74 5.1 151/280.28/33.47 11.2 0.0e-∞ 
U5000.10 563/956.93/133.08 8.3 237/605.39/116.46 19.1 0.0e-∞ 
breg500.0 0/14.92/34.57 0.2 0/4.48/15.16 0.4 4.6e-18 
breg500.12 12/48.61/22.49 0.2 12/40.27/21.55 0.6 4.4e-17 
breg500.16 16/55.24/21.91 0.2 16/44.53/19.45 0.6 2.1e-29 
breg500.20 20/69.27/18.55 0.2 20/67.62/18.75 0.5 2.4e-2 
breg5000.0 0/15.43/121.64 3.4 0/5.33/70.00 4.6 1.2e-2 
breg5000.4 4/71.93/162.14 4.2 4/13.55/43.33 7.2 6.0e-27 
breg5000.8 8/118.44/169.09 4.8 8/25.92/62.67 6.9 5.0e-53 
breg5000.16 16/172.25/165.16 6.8 16/55.95/68.42 10.5 5.3e-79 
cat.352 7/21.33/5.54 0.1 5/19.32/5.72 0.1 2.0e-15 
cat.702 19/41.34/9.27 0.1 13/36.22/9.12 0.2 1.7e-33 
cat.1052 29/59.11/12.53 0.2 25/49.49/10.83 0.4 1.9e-65 
cat.5252 177/253.03/32.31 1.3 126/197.98/33.09 2.7 3.9e-194 
w-grid100.20 20/21.89/2.97 0.0 20/21.97/3.03 0.1 2.8e-1 
w-grid500.42 42/48.77/8.82 0.2 42/46.67/6.45 0.4 8.7e-10 
w-grid1000.40 40/47.46/13.98 0.5 40/45.31/11.37 1.2 8.5e-05 
w-grid5000.100 100/122.43/36.86 4.7 100/108.48/17.80 11.0 5.3e-26 

1 Results from 1,000 independent runs. 
2 CPU milliseconds on an Intel Core i5 760, 2.80GHz. 
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when no better solution is found. When combined with an efficient data structure called a 
bucket list, the time complexity of the FM algorithm is O(|E|). The FM algorithm can be  
viewed as a variant k-opt scheme, in which the number of nodes moved per pass is not fixed,  
and this improves the one-opt scheme in which only one node is changed per pass. 
 

Table 3. Experimental results of the KL algorithm and the SCR of FM 
Graph name KL algorithm [23] 

Best/Ave/SD1 
Time2 
(ms) 

SCR of FM 
Best/Ave/SD1 

Time2 
(ms) 

t-test 
p-value 

U500.05 12/38.29/9.90 0.4 5/24.73/8.61 0.6 2.8e-160 
U500.10 26/90.20/26.88 0.7 26/56.90/20.24 1.1 9.6e-151 
U500.20 178/221.01/40.31 1.1 178/198.95/20.15 1.8 6.5e-49 
U500.40 412/436.57/45.71 1.6 412/416.31/19.32 2.6 1.1e-35 
U1000.05 26/74.57/16.11 1.1 15/47.73/13.03 1.5 2.0e-216 
U1000.10 51/163.84/45.44 1.9 39/98.41/32.50 2.7 4.9e-190 
U1000.20 222/312.13/69.82 3.0 222/274.49/40.80 4.4 7.8e-45 
U1000.40 737/860.00/142.31 4.3 737/788.50/84.09 6.8 1.8e-39 
U2000.05 75/162.35/25.47 2.7 39/102.97/19.56 3.3 0.0e-∞ 
U2000.10 71/346.93/77.93 4.9 72/228.34/61.12 6.0 1.2e-195 
U5000.05 251/433.93/47.16 13.0 151/280.28/33.47 11.2 0.0e-∞ 
U5000.10 469/956.87/139.32 21.3 237/605.39/116.46 19.1 0.0e-∞ 
breg500.0 0/16.48/23.54 0.3 0/4.48/15.16 0.4 7.7e-39 
breg500.12 12/49.82/14.46 0.4 12/40.27/21.55 0.6 9.6e-30 
breg500.16 16/55.12/13.66 0.5 16/44.53/19.45 0.6 1.5e-41 
breg500.20 20/69.91/15.06 0.5 20/67.62/18.75 0.5 1.3e-3 
breg5000.0 0/23.49/25.50 22.9 0/5.33/70.00 4.6 1.5e-14 
breg5000.4 4/65.45/57.17 24.1 4/13.55/43.33 7.2 8.3e-94 
breg5000.8 8/115.08/48.73 26.2 8/25.92/62.67 6.9 1.1e-179 
breg5000.16 16/188.29/35.17 32.7 16/55.95/68.42 10.5 2.3e-301 
cat.352 7/20.70/4.91 0.1 5/19.32/5.72 0.1 4.7e-9 
cat.702 19/41.80/7.91 0.2 13/36.22/9.12 0.2 2.7e-44 
cat.1052 29/58.36/10.07 0.3 25/49.49/10.83 0.4 4.5e-69 
cat.5252 177/251.79/28.53 6.1 126/197.98/33.09 2.7 6.1e-203 
w-grid100.20 20/21.91/2.32 0.0 20/21.97/3.03 0.1 3.1e-1 
w-grid500.42 42/47.84/7.57 0.4 42/46.67/6.45 0.4 1.1e-4 
w-grid1000.40 40/47.45/13.54 1.0 40/45.31/11.37 1.2 6.9e-05 
w-grid5000.100 100/122.39/38.98 23.9 100/108.48/17.80 11.0 7.1e-24 

1 Results from 1,000 independent runs. 
2 CPU milliseconds on Intel Core i5 760, 2.80 GHz 
 
3.5.2 Results 
 
The FM algorithm was used as the basic search method, and it improved through the SCR 
method proposed in this paper. Table 2 shows the experimental results based on 1,000 times 
of independent runs. The best results, average results, and standard deviation of each 
algorithm are also presented in Table 2. The probability p of the one-tailed t-test is presented 
in the last column of the table to statistically verify the performance difference between the 
two algorithms. The smaller the p value is, the more reliable the performance difference is. At 
a 95% confidence level (i.e., p-value less than 0.05), there were better quality improvements in 
all test graphs except for one graph (w-grid100.20).  
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This one graph is a graph in which no clusters are found, as can be seen in Table 1, naturally, 
no SCR effect can be expected. Each algorithm was performed in less than 20ms in all cases, 
and the results were obtained very quickly. The FM algorithm is a result of convergence until 
there are no further improvements, so even with more time, quality cannot be improved. 

The SCR of FM was compared with the KL algorithm [23], which is another representative 
search method in graph bisection. The results are shown in Table 3. It could be seen that the 
results were consistent with those of comparing with the FM algorithm in Table 2. 

4. Conclusion 
This paper proposes a simulated catalytic reaction method mimicking the catalytic reaction in 
the field of chemistry. As far as the authors know, this is the first trial to apply the phenomenon 
of chemistry to a computation. The proposed method can be successfully applied to graph 
bisection, which is a typical problem in combinatorial optimization field. 

In this study, a very simple clustering method [22] was used to find clusters that require 
large energy for movement. However, an improvement in its performance can be expected 
when more advanced clustering methods [7,21,24,25,26,27,28,29,30,31] are applied. 

In addition, this study is applied to a graph bisection problem that is representative of 
combinatorial optimization, but it can also be applied to general combinatorial optimization 
problems as well, and application to other problems is left for future research. There are two 
issues that need to be discussed to apply the SCR to other problems: (i) How to define 'cluster'? 
This issue is closely related to the encoding of the solution. A ‘cluster’ to apply SCR to a 
problem is related to local optimizer of the problem. A `cluster’ in this study is a barrier of a 
basis search algorithm, and then it can be defined as the unbreakable pattern in the encodings 
of local optima with respect to the algorithm. From this definition, SCR can overcome the 
defect of a given local optimizer. (ii) How to weaken connectivity within the cluster. The issue 
is closely related to the cost function of the problem. When the proposed SCR was applied to 
another combinatorial optimization problem in which the cost function of a solution S is 
∑ cost(Su)u: partial encoding , the transformed cost function becomes ∑ cost(Su)u⊈C +
 ρ∑ cost(Su)u⊆C  , where C is a cluster and 0 ≤  ρ < 1. 
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