• Title/Summary/Keyword: columnar growth

Search Result 123, Processing Time 0.024 seconds

Single crystal growth of syntheric emerald by reflux method of temperatute gradient using natural beryl (천연베릴을 이용한 온도구배 환류법에 의한 합성 Emerald 단결정 육성)

  • 최의석;김무경;안영필;서청교;안찬준;이종민
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.532-538
    • /
    • 1998
  • Emerald ($3BeO{\cdot}Al_2O_3{\cdot}6SiO_2:Cr^{3+}$) single crystal was grown by temperature gradient reflux method with using Korean natural beryl. The flux of lithium-molibudenium-vanadium oxide system was made by means of mixing the 2 sort of flux which were differently melted $Mo_3-Li_2O$ and $V_2O_5-Li_2O$ each other. The optimum composition of flux was 3 mole ratio of molibudenium. vanadium oxides to lithium oxide ($(MoO_3+V_2O_5)/Li_2O$), flux additives were substituted more less then 0.2 mole% of $K_2O$ or $Na_2O$ to the $Li_2O$ amount. The melting concentration of mixing beryl material was 3~10% content to the flux, that of $Cr_2O_3$ color dopant was 1% to the beryl amount. In the crystal growing apparatus with temperature gradient in the 3 zone furnace which was separated into the block of melt, growth and return, the solution have got to circulate continuously between $1100^{\circ}C$ and $1000^{\circ}C$ in steady state. When thermal fluctuation was treated to during 2 hrs once on a day at 950~$1000^{\circ}C$ in growth zone, the supersaturation solution was maintained, controled and emerald single crystal can be grown large crystal which was prevented from the nucleation of microcrystallite. The preferencial growth direction of hexagonal columnar emerald single crystal was the c(0001) plane of botton side and vertical to the m(1010) plane of post side.

  • PDF

Study on Depositing Oxide Films on Ni Substrate for Superconducting Tape (초전도 테이프 제작을 위한 니켈기판 상의 산화물 박막 증찰)

  • Kim, Ho-Sup;Shi, Dongqui;Ko, Rock-Kil;Chung, Jun-Ki;Ha, Hong-Soo;Song, Kyu-Jeong;Park, Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1356-1361
    • /
    • 2004
  • High temperature superconducting coated conductor has a structure of ///. The buffer layer consists of multi-layer, this study reports the deposition method and optimal deposition conditions of YSZ(Yttria-stabilized zirconia) layer which plays a important part in preventing the elements of substrate from diffusing into the superconducting layer. YSZ layer was deposited by DC reactive sputtering technique using water vapor for oxidizing deposited elements on substrate. To investigate optimal thickness of YSZ film, four YSZ/CeO$_2$/Ni samples with different YSZ thickness(130 nm, 260 nm, 390 nm, and 650 nm) were prepared. The SEM image showed that the surface of YSZ layer was getting to be rougher as YSZ layer was getting thicker and the growth mode of YSZ layer was columnar grain growth. After CeO$_2$ layer was deposited with the same thickness of 18.3 nm on each four samples, YBCO layer was deposited by PLD method with the thickness of 300 nm. The critical currents of four samples were 0, 6 A, 7.5 A, and 5 A respectively. This shows that as YSZ layer is getting thicker, YSZ layer plays a good role as a diffusion barrier but the surface of YSZ layer is getting rougher.

A Study on the Solidification and Purification of High Purity Aluminium Alternate Stirring Method (정역 회전법에 의한 고순도 알루미늄의 응고 및 정련에 관한 연구)

  • Kim, Wook;Lee, Joung-Ki;Baik, Hong-Koo;Heo, Seong-Gang
    • Journal of Korea Foundry Society
    • /
    • v.12 no.3
    • /
    • pp.220-229
    • /
    • 1992
  • The degree of purification and the macrostructure of high purity aluminium were studied through the alternate stirring method in order to improve the nonuniformity of solute concentration in the unidirectional stirring method. The $2^3$ factorial design was done to examine the effects of experimental factors more qualitatively. In the relatively low stirring speed of 1500 rpm with alternate stirring mode, the uniform solute profile and refined grain structure were obtained due to strong washing effect and turbulent fluid flow. It was induced by the transition of the momentum boundary layer by alternation of the stirrer. It was concluded from this study that the alternate stirring mode was more effective to obtain the uniformity of solute even in the stirring speed of 1500 rpm. But the degree of purification decreased below the critical alternating period. When 2N(99.8wt.%) aluminium was used as the starting material the morphology of solid-liquid showed the cellular shape and the columnar grains were inclined to the direction of rotation. This inclined grain growth resulted from the difference of relative velocities of solid and liquid. The inclined angle was increased as the stirring speed increased and solidification proceeded. In the case of 4N aluminium, there was no inclined grain growth and it was confirmed from the macrostructure and SEM work that the morphology of solid-liquid interface was planar. From the factorial design, it was found that the alternate stirring mode showed poorer purification effect than that of unidirectional stirring mode at low speed(500 rpm). In addition, the factor that had the most significant effect on the degree of purification was the stirring speed.

  • PDF

In Situ Observation of Solidification Behavior in Undercooled $Pd_{40}Cu_{30}Ni_{10}P_{20}$ Alloy Melts during Linear Cooling (연속냉각 중 과냉 된 $Pd_{40}Cu_{30}Ni_{10}P_{20}$ 합금 용탕의 실시간 응고거동 관찰)

  • Kim, Ji-Hun
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.276-285
    • /
    • 2003
  • In the undercooled melt of $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy, the solidification behavior including nucleation and growth of crystals at the micrometer level has been observed in-situ by use of a confocal scanning laser microscope combined with an infrared image furnace. The $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy specimens were cooled from the liquid state to glass transition temperature. 575 K, at various cooling late under a helium gas flow. According to the cooling rate, the morphologies of the solidification front are changed among various types, irregular jog like front, columnar dendritic front, cellular grain, star like shape jog and fine grain, etc. The velocities of the solid-liquid interface are measured to be $10^{-5}{\sim}10^{-8}$ m/s which are at least two orders higher than the theoretical crystal growth rates. Combining the morphologies observed in terms of cooling rates and their solidification behaviors, we conclude that phase separation takes place in the undercooled molten $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy. The continuous cooling transformation (CCT) diagram was constructed from solidification onset time at various linear cooling conditions with different rate. The CCT diagram suggests that the critical cooling rate for glassy solidification is about 1.5 K/s, which is in agreement with the previous calorimetric findings.

Effect of Tert-Butyl Alcohol Template on the Pore Structure of Porous Tungsten in Freeze Drying Process (동결건조 공정에서 Tert-butyl alcohol 기공형성제가 텅스텐 다공체의 기공구조에 미치는 영향)

  • Lee, Eui Seon;Heo, Youn Ji;Ko, Yun Taek;Park, Jin Gyeong;Cho, Yong-Ho;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.216-220
    • /
    • 2021
  • The effect of tert-butyl alcohol (TBA) as a freezing solvent on the pore structure of a porous tungsten body prepared by freeze-drying is analyzed. TBA slurries with a WO3 content of 10 vol% are prepared by mixing with a small amount of dispersant and binder at 30℃. The slurries are frozen at -25℃, and pores are formed in the frozen specimens by the sublimation of TBA during drying in air. After hydrogen reduction at 800℃ and sintering at 1000℃, the green body of WO3 is completely converted to porous W with various pore structures. Directional pores from the center of the specimen to the outside are observed in the sintered bodies because of the columnar growth of TBA. A decrease in pore directionality and porosity is observed in the specimens prepared by long-duration drying and sintering. The change in pore structure is explained by the growth of the freezing solvent and densification.

ZnO Film Deposition on Aluminum Bottom Electrode for FBAR Filter Applications and Effects of Deposition Temperature on ZnO Crystal Growth (FBAR 필터 응용을 위한 Al 하부전극 상에서 ZnO 박막 증착 및 온도가 ZnO 결정의 성장에 미치는 영향)

  • ;;;Mai Linh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.255-262
    • /
    • 2003
  • In this paper, an investigation on the ZnO film deposition using radio-frequency magnetic sputtering techniques on aluminum bottom electrode for film bulk acoustic wave resonator (FBAR) filter applications and the temperature effects on the ZnO film growth is presented. The investigation on how much impact the actual process temperature may have on the crystal growth is more meaningful if it is considered that the piezoelectricity property of ZnO films plays a dominant role in determining the resonance characteristics of FBAR devices and the piezoelectricity is determined by the degree of the c-axis preferred orientation of the deposited ZnO films. In this experiment, it was found that the growth of ZnO crystals has a strong dependence on the deposition temperature ranged from room temperature to $350^{\circ}C$ regardless of the RF powers applied and there exist 3 temperature regions divided by 2 critical temperatures according to the degree of the c-axis preferred orientation. Overall, below $200^{\circ}C$, ZnO deposition results in columnar grains with a highly preferred c-axis orientation. With this ZnO film, a multilayered FBAR structure could be realized successfully.

Growth and Structural Properties of Fe Thin Films Electrodeposited on n-Si(111) (n-Si(111) 기판 위에 전기증착에 의한 Fe 박막의 성장과 구조적 특성)

  • Kim Hyun-Deok;Park Kyeong-Won;Lee Jong-Duk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1663-1670
    • /
    • 2006
  • Single crystal Fe thin films were grown directly onto n-Si(111) substrates by pulsed electrodeposition. Cyclic Voltammogram(CV) indicated that the $Fe^{2+}/n-Si(111)$ interface shows a good diode behavior by forming a Schottky barrier. From Mott-Schottky (MS) relation, it is found that the flat-band potential of n-Si(111) substrate and equilibrium redox potential of $Fet^{2+}$ ions are -0.526V and -0.316V, respectively. The nucleation and growth kinetics at the initial reaction stages of Fe/n-Si(111) substraste was studied by current transients. Current transients measurements have indicated that the deposition process starts via instantaneous nucleation and 3D diffusion limited growth. After the more deposition, the deposition flux of Fe ions was saturated with increase of deposition time. from the as-deposited sample obtained using the potential pulse of 1.4V and 300Hz, it is found that Fe nuclei grows to three dimensional(3D) islands with the average size of about 100nm in early deposition stages. As the deposition time increases, the sizes of Fe nuclei increases progressively and by a coalescence of the nuclei, a continuous Fe films grow on the Si surface. In this case, the Fe films show a highly oriented columnar structure and x-ray diffraction patterns reveal that the phase ${\alpha}-Fe$ grows on the n-Si(111) substrates.

Preparation of epitaxial bismuth titanate thin films by the sol-gel process (졸-겔법을 이용한 Epitaxial Bismuth Titanate 박막의 제조)

  • 김상복;이영환;윤연흠;황규석;오정선;김병훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.56-62
    • /
    • 2003
  • Epitaxial $Bi_4Ti_3O_{12}$ films on $SrTiO_3$(100), L$aA1O_3$(100) and MgO(100) were prepared by sol-gel process using metal naphthenate as a starting material. As-deposited films were pyrolyzed at $500^{\circ}C$ for 10 min In air and annealed at $750^{\circ}C$ for 30 min in air. Crystallinity and in-plane alignment of the film were investigated by X-ray diffraction $\theta$-2$\theta$ scan and P scanning. A field emission-scanning electron microscope and an atomic force microscope were used for characterizing the surface morphology and the surface roughness of the film. The film prepared on MgO(100) showed the most poor crystallinity and in-plane alignment, compared to those on the other substrates. While the films on $LaA1O_3$(100) and $SrTiO_3$(100) having high crystallinity and in-plane alignment showed the form of columnar grain growth, the film on MgO(100) which had poor crystallinity showed the form of acicula grain growth.

Microstructure and Tensile Properties of Al-Mn/Al-Si Hybrid Aluminum Alloy Prepared by Electromagnetic Duo-Casting (전자기 듀오캐스팅으로 제조한 Al-Mn/Al-Si 하이브리드 알루미늄합금의 미세조직과 인장 특성)

  • Park, Sung-Jin;Li, Tingju;Kim, Chong-Ho;Park, Jun-Pyo;Chang, Si-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.97-102
    • /
    • 2012
  • The microstructure and tensile properties of Al-Mn/Al-Si hybrid aluminum alloys prepared by electromagnetic duocasting were investigated. Only the Al-Mn alloy showed the typical cast microstructure of columnar and equiaxed crystals. The primary dendrites and eutectic structure were clearly observed in the Al-Si alloy. There existed a macro-interface of Al-Mn/Al-Si alloys in the hybrid aluminum alloys. The macro-interface was well bonded, and the growth of primary dendrites in Al-Si alloy occurred from the macro-interface. The Al-Mn/Al-Si hybrid aluminum alloys with a well-bonded macro-interface showed excellent tensile strength and 0.2% proof stress, both of which are comparable to those values for binary Al-Mn alloy, indicating that the strength is preferentially dominated by the deformation of the Al-Mn alloy side. However, the degree of elongation was between that of binary Al-Mn and Al-Si alloys. The Al-Mn/Al-Si hybrid aluminum alloys were fractured on the Al-Mn alloy side. This was considered to have resulted from the limited deformation in the Al-Mn alloy side, which led to relatively low elongation compared to the binary Al-Mn alloy.

Electrical mechanism analysis of $Al_2O_3$ doped zinc oxide thin films deposited by rotating cylindrical DC magnetron sputtering (원통형 타겟 형태의 DC 마그네트론 스퍼터링을 이용한 산화 아연 박막의 전기적 기제에 대한 분석)

  • Jang, Juyeon;Park, Hyeongsik;Ahn, Sihyun;Jo, Jaehyun;Jang, Kyungsoo;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.55.1-55.1
    • /
    • 2010
  • Cost efficient and large area deposition of superior quality $Al_2O_3$ doped zinc oxide (AZO) films is instrumental in many of its applications including solar cell fabrication due to its numerous advantages over ITO films. In this study, AZO films were prepared by a highly efficient rotating cylindrical dc magnetron sputtering system using AZO target, which has a target material utilization above 80%, on glass substrates in argon ambient. A detailed analysis on the electrical, optical and structural characteristics of AZO thin films was carried out for solar cell application. The properties of films were found to critically depend on deposition parameters such as sputtering power, substrate temperature, working pressure, and thickness of the films. A low resistivity of ${\sim}5.5{\times}10-4{\Omega}-cm$ was obtained for films deposited at 2kW, keeping the pressure and substrate temperature constant at 3 mtorr and $230^{\circ}C$ respectively, mainly due to an increase in carrier mobility and large grain size which would reduce the grain boundary scattering. The increase in carrier mobility with power can be attributed to the columnar growth of AZO film with (002) preferred orientation as revealed by XRD analysis. The AZO films showed a high transparency of>87% in the visible wavelength region irrespective of deposition conditions. Our results offers a cost-efficient AZO film deposition method which can fabricate films with significant low resistivity and high transmittance that can find application in thin-film solar cells.

  • PDF