• Title/Summary/Keyword: column effective length

Search Result 106, Processing Time 0.021 seconds

Determination of the Accurate Effective Length for Buckling Design of Cable-Supported Bridges (케이블지지교량의 좌굴설계를 위한 유효좌굴길이 산정)

  • Jin, Man Sik;Kyoung, Yong Soo;Lee, Myung Jae;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.355-363
    • /
    • 2004
  • In order to obtain the effective length factor of beam-column members of plane frames, this paper extensively used an alignment chart approach, based on the nomograph given in LRFD-AISC specification commentaries. However, it should be noted that various simplifications and assumptions were introduced in constructing the alignment chart. To overcome the practical limitations of the alignment chart, this paper proposes a simple but accurate procedure that determined the effective buckling length for stability design of main members of cable-supported bridges. This method requires the full system buckling analysis. The numerical examples showing the suitability of the present scheme are discussed and some conclusions are drawn.

Limitation of effective length method and codified second-order analysis and design

  • Chan, S.L.;Liu, Y.P.;Zhou, Z.H.
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.181-192
    • /
    • 2005
  • The effective length method for flexural (column) buckling has been used for many decades but its use is somewhat limited in various contemporary design codes to moderately slender structures with elastic critical load factor (${\lambda}_{cr}$) less than 3 to 5. In pace with the use of higher grade steel in recent years, the influence of buckling in axial buckling resistance of a column becomes more important and the over-simplified assumption of effective length factor can lead to an unsafe, an uneconomical or a both unsafe and uneconomical solution when some members are over-designed while key elements are under-designed. Effective length should not normally be taken as the distance between nodes multiplied by an arbitrary factor like 0.85, 1.0, 2.0 etc. Further, the classification of non-sway and sway-sensitive frames makes the conventional design procedure tedious to use and, more importantly, limited to simple regular frames. This paper describes the practical use of second-order analysis with section capacity check allowing for $P-{\delta}$ and $P-{\Delta}$ effects together with member and system imperfections. Most commercial software considers only the $P-{\Delta}$ effect, but not member and frame imperfections nor $P-{\delta}$ effect, and engineers must be very careful in their uses. A verification problem is also given for validation of software for this type of powerful second-order analysis and design. It is a trend for popular and advanced national design codes in using the second-order analysis as a norm for analysis and design of steel structures while linear analysis may only be used in very simple structures.

Effects of Number of bays and Bracing Member on the Ultimate Behavior of System Scaffolds (Bay 수와 가새재 설치가 시스템 비계 극한거동에 미치는 영향)

  • Lee, Sun-Woo;Jang, Nam-Kwon;Won, Jeong-Hun;Jeong, Seong-choon
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.6-15
    • /
    • 2020
  • This study examined the structural behaviors and ultimate loads of assembled system scaffolds by load tests. Considering the number of bay and bracing installation, four specimens were tested. The bays were divided into 1 bay and 2 bays, with and without the bracing member installed. Failure modes and horizontal displacements show that the whole column buckled without showing no point of inflection in the column, regardless of whether or not braces were installed. Thus, the current design method of selecting the vertical spacing between the horizontal members of the system scaffold as the effective buckling length underestimates the effective buckling length. In case of 1 bay specimens, the ultimate loads between specimens with and with bracing members are similar. However, in case of 2 bay specimens, the specimen with bracing members shows the increased ultimate load of 36% compared with that without bracing members. In addition, as the number of bays in the system scaffold increases, the ultimate load of the unit vertical column increases in case of the specimen with bracing installation. However, in the specimen without bracing members, the ultimate load of the unit column reduces with the increment of the number of bays due to the torsional buckling. Therefore, it is essential to install bracing members to increase the whole strength of system scaffolds and the ultimate load of the unit column.

Seismic Performance Evaluation of Non-Seismic Reinforced Concrete Buildings Strengthened by Perimeter Steel Moment Frame (철골 모멘트골조로 보강된 철근콘크리트 건물의 내진성능 평가)

  • Kim, Seonwoong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.233-241
    • /
    • 2020
  • This paper is to investigate the retrofitting effect for a non-seismic reinforced concrete frame strengthened by perimeter steel moment frames with indirect integrity, which ameliorates the problems of the direct integrity method. To achieve this, first, full-scale tests were conducted to address the structural behavior of a two-story non-seismic reinforced concrete frame and a strengthened frame. The non-seismic frame showed a maximum strength of 185 kN because the flexural-shear failure at the bottom end of columns on the first floor was governed, and shear cracks were concentrated at the beam-column joints on the second floor. The strengthened frame possessed a maximum strength of 338 kN, which is more than 1.8 times that of the non-seismic specimen. A considerable decrease in the quantity of cracks for the strengthened frame was observed compared with the non-seismic frame, while there was the obvious appearance of the failure pattern due to the shear crack. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be reasonably determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The proposed method had an error of about 2.2% for the non-seismic details and about 4.4% for the strengthened frame based on the closed results versus the experimental results.

Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections

  • Bui, Van-Tuong;Vu, Quang-Viet;Truong, Viet-Hung;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.497-521
    • /
    • 2021
  • In this study, an effective numerical method is introduced for nonlinear inelastic analyses of rectangular concrete-filled steel tubular (CFST) frames for the first time. A steel-concrete composite fiber beam-column element model is developed that considers material, and geometric nonlinearities, and residual stresses. This is achieved by using stability functions combined with integration points along the element length to capture the spread of plasticity over the composite cross-section along the element length. Additionally, a multi-spring element with a zero-length is employed to model the nonlinear semi-rigid beam-to-column connections in CFST frame models. To solve the nonlinear equilibrium equations, the generalized displacement control algorithm is adopted. The accuracy of the proposed method is firstly verified by a large number of experiments of CFST members subjected to various loading conditions. Subsequently, the proposed method is applied to investigate the nonlinear inelastic behavior of rectangular CFST frames with fully rigid, semi-rigid, and hinged connections. The accuracy of the predicted results and the efficiency pertaining to the computation time of the proposed method are demonstrated in comparison with the ABAQUS software. The proposed numerical method may be efficiently utilized in practical designs for advanced analysis of the rectangular CFST structures.

The Effects of Joint Mobilization and Therapeutic Exercise on Difference for Length of Lower Limbs (운동치료와 관절가동술이 하지길이 차이에 미치는 영향)

  • Jung, Yeon-Woo;Gong, Won-Tae;Kim, Byoung-Gon
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.13 no.2
    • /
    • pp.55-68
    • /
    • 2007
  • Object: to evaluate the effects of two different treatments-joint mobilization and therapeutic exercise on difference for length of lower limbs. Method: The subjects were participated twenty six who has difference for length of lower limbs more 10mm. All subjects randomly assigned to Joint mobilization group(n=13) and therapeutic exercise group. Joint mobilization group received joint mobilization for 2 minutes, Therapeutic exercise group received for 15 minutes per day and 3 times a week during 4 week period. Tape measure method was used to measure the difference for length of lower limbs. Biodex was used to measure the muscle power of lower limbs(Knee flexion, extension). Finger to floor test was used to measure the mobility of spinal column. All measurement of each subjects were measured at pre-experiment, after 2weeks and post-experiment. Result: The result of this study were summarized as follows : 1. Both treatment decreased difference for length of lower limbs while joint mobilization more decreased difference for length of lower limbs than therapeutic exercise. 2. Both treatment increased mobility of spinal column while joint mobilization more increased mobility of spinal column than therapeutic exercise. 3. Joint mobilization increased muscle power while therapeutic exercise decreased muscle power. Conclusion: in a group-wise comparison joint mobilization is more effective than therapeutic exercise.

  • PDF

The Robust Design with Column Merging Method for the Optimal Design of Low Noise Intake System (강건설계와 열합병법을 이용한 세분화한 흡기계 저소음 최적설계)

  • 오재응;차경준;한정순;박영선;진정언
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.773-784
    • /
    • 2002
  • This paper proposes an optimal design to improve the performance of the intake system by reducing the noise. We adapt the Taguchi method and column merging method for the above design. At the first stage of the design, the length and radius of each component of the current intake system are selected as control factors. Then the $L^{18}$ table of orthogonal array is used to get the effective main factors. At the second stage, the $L^{16}$ table of orthogonal array and the column merging method is combined to analyze subdivided significant factors. We know that the robust design with the column merging method provides better design for noise of intake system than the robust design itself.

Seismic Performance Evaluation of School Building Short Column Effect (끼움벽과 단주효과를 고려한 학교건축물의 내진성능평가)

  • Ju, Chang-Gil;Han, Ju-Yeon;Park, Tae-Won
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.21 no.2
    • /
    • pp.33-39
    • /
    • 2014
  • In the case of low-rise buildings in seismic performance evaluation, lateral force resistance of the pillars affects the seismic performance of the building. Evaluation of the seismic performance of the column is determined by the holding performance is evaluated by comparing the shear strength and bending strength it was destroyed bylow intensity. In case of the school building, in order to install the large windows for ventilation and lighting of the partition walls are located between the pillars. The case of the pillars of these, shear failure occurs in the event of an earthquake is often, in the seismic performance evaluation, partition wall and the wall of the shim is evaluated ignoring, pillar of the general pillars If you have to calculate the results of the seismic performance distorted that are destroyed by bending behavior can be evaluated as often. Results of the study, when assessed by distinguishing the effective length of the column, it was found that when a seismic load is applied, it is possible to accurately predict the failure mode, reliable results of seismic performance evaluation of the school building.

A new method for determining the effective length factor of columns in partially braced frames on elastic supports

  • Adel Slimani;Toufik Belaid;Messaoud Saidani;Fatiha Ammari;Redouane Adman
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.825-835
    • /
    • 2023
  • The effective buckling length factor is an important parameter in the elastic buckling analysis of steel structures. The present article aims at developing a new method that allows the determination of the buckling factor values for frames. The novelty of the method is that it considers the interaction between the bracing and the elastic supports for asymmetrical frames in particular. The approach consists in isolating a critical column within the frame and evaluating the rotational and translational stiffness of its restraints to obtain the critical buckling load. This can be achieved by introducing, through a dimensionless parameter 𝜙i, the effects of coupling between the axial loading and bending stiffness of the columns, on the classical stability functions. Subsequently, comparative, and parametric studies conducted on several frames are presented for assessing the influence of geometry, loading, bracing, and support conditions of the frame columns on the value of the effective buckling length factor K. The results show that the formulas recommended by different approaches can give rather inaccurate values of K, especially in the case of asymmetric frames. The expressions used refer solely to local stiffness distributions, and not to the overall behavior of the structure.

A Study on the Effective Length Factor for Steel Plate-Concrete Structures using Cementless Concrete (무시멘트 콘크리트를 활용한 강판콘크리트 구조의 유효좌굴길이 계수 분석에 관한 연구)

  • Han, Myoung-Hwan;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.661-671
    • /
    • 2018
  • Domestic studies on steel plate concrete structures have focused on nuclear structures with high strength. In this study, the SC structure was applied to the general structure, and the SC structure that is advantageous in terms of safety and construction was limited to a special structure. As a basic study for applying SC, this paper proposes basic design information of a SC structure applying cement concrete to plan the structure, which is suitable for eco - friendliness by replacing concrete cement, an important factor in a SC structure, with blast furnace slag. This study examined the compression characteristics and the effective length factor under central compression load. To calculate the effective length factor, the Euler column theory was applied without applying plate theory. The effective length factor was calculated from the yield strength of the steel plate, buckling of the steel plate, and the point at which the concrete was broken. In addition, this study examined whether the maximum compressive strength meets the national and international reference equations with the slenderness ratio (B/t) as a parameter. By analyzing the buckling of the specimen by applying the column theory and selecting the strain of the measured steel plate, the effective length factor was analyzed and compared with the value presented in the reference equation.