• Title/Summary/Keyword: column effect

Search Result 2,091, Processing Time 0.023 seconds

Study of hydrodynamics and iodine removal by self-priming venturi scrubber

  • Jawaria Ahad;Talha Rizwan ;Amjad Farooq ;Khalid Waheed ;Masroor Ahmad ;Kamran Rasheed Qureshi ;Waseem Siddique ;Naseem Irfan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.169-179
    • /
    • 2023
  • Filtered containment system is a passive safety system that controls the over-pressurization of containment in case of a design-based accidents by venting high pressure gaseous mixture, consisting of air, steam and radioactive particulate and gases like iodine, via a scrubbing system. An indigenous lab scale facility was developed for research on iodine removal by venturi scrubber by simulating the accidental scenario. A mixture of 0.2 % sodium thiosulphate and 0.5 % sodium hydroxide, was used in scrubbing column. A modified mathematical model was presented for iodine removal in venturi scrubber. Improvement in model was made by addition of important parameters like jet penetration length, bubble rise velocity and gas holdup which were not considered previously. Experiments were performed by varying hydrodynamic parameters like liquid level height and gas flow rates to see their effect on removal efficiency of iodine. Gas holdup was also measured for various liquid level heights and gas flowrates. Removal efficiency increased with increase in liquid level height and gas flowrate up to an optimum point beyond that efficiency was decreased. Experimental results of removal efficiency were compared with the predicted results, and they were found to be in good agreement. Maximum removal efficiency of 99.8% was obtained.

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi;Caijian Liu;Alipujiang Jierula
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.709-728
    • /
    • 2023
  • Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.

Effect of Size Factor on Estimating Elastic Modulus of Disk-Shaped Concrete Specimen Using Impact Resonance Test (충격공진법을 이용한 콘크리트 원판 시편의 탄성계수 추정에 크기 인자가 미치는 영향)

  • Kim, Min-Suk;Son, Joeng Jin;Lee, Chang Joon;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • In this work, a depth-by-depth evaluation on the deterioration of concrete is suggested by utilizing disk shaped concrete specimens. Dynamic elastic modulus of cylindrical concrete was measured using a free-free resonance column method and compared with dynamic elastic modulus of disk-shaped concrete measured by impulse excitation technique(IET) and impact resonance(IR). According to the results of the experiment, both IET and IR methods showed a smaller difference in dynamic elastic modulus with smaller deviation in data when thickness of the disk specimen was increased. This trend was more evident from dynamic elastic modulus measured by IR method compared to that measured by IET. Variation in data was also smaller with the IR result. To increase the accuracy of the data, it is recommended to use the IR method for disk specimen with a diameter of 100mm and a thickness of 25mm.

Effect of acid or base additive in the mobile phase on enantiomer separation of amino alcohols using polysaccharide derived chiral columns (다당유도체를 기초로 한 키랄 컬럼에서 이동상에서의 산 또는 염기 첨가제가 아미노 알코올의 광학분리에 미치는 영향)

  • Huang, Hu;Jin, Jing Yu;Lee, Wonjae
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.313-318
    • /
    • 2009
  • Liquid chromatographic enantiomer separation of amino alcohols was performed on several chiral columns based on polysaccharide derivatives under the mobile phase conditions containing acid or base additive. The chromatographic parameters were greatly influenced by the nature of the mobile phase containing acid or base additive as well as the used chiral columns. Compared to chromatographic results obtained in the mobile phase containing base additive (0.1% triethylamine), especially, Chiralcel OD showed dramatically enhanced separation factors and resolution factors with reduced capacity factors under the mobile phase condition containing acidic additive (0.1% trifluoroacetic acid). When the mobile phase containing 0.05% trifluoroacetic acid and 0.05% triethylamine was used on Chiralcel OD, the greatest separation factors and resolution factors among all other mobile phase conditions in this study were observed.

Characteristics of Hardening Zone by Suction Pressure in Suction Drain Method (석션드레인 공법에서 적용 부압에 따른 Hardening Zone의 특성)

  • Han, Sang-Jae;Kim, Ki-Nyun;Kim, Soo-Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.75-81
    • /
    • 2008
  • In this study, a series of laboratory column test on Suction Drain Method which is one of the way to make an soft ground improvement were conducted in order to investigate the effect of the Hardening Zones and the ratio of improvements depending on periods of the improvements and various applied suction pressures. On this occasion, the experimental conditions are followings; in the case of the periods of effectiveness, 4 days, 8 days, 12 days, 16 days, 20 days and in the case of the applied pressures of the Suction are -20 kPa, -40 kPa, -60 kPa and -80 kPa were carried out. As a result of test, settlement increased with suction pressure and duration increase, and gradually converged. Also, as comparing permeability decrease ratio with which calculated back from water content and numerically predicted using Hansbo's radial consolidation theory, measured value was almost coincide with predicted value when permeability decrease ratio was assumed as 2~3. Furthermore, the hardening zone was appeared within 7~8 cm of whole radial (25 cm).

Numerical Evaluation of Settlement Reducing Effect by Partial Reinforcement of Rock Fill (수치해석을 통한 암성토 부분보강의 침하억제 효과 평가)

  • Lee, Su-Hyung;Choi, Yeong-Tae;Han, Jin-Gyu ;Gu, Kyo-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.23-31
    • /
    • 2023
  • The escalating settlements observed in concrete slab tracks pose a significant challenge in Korea, raising concerns about their adverse impact on the safe operation of high-speed railways and the substantial costs involved in restoration. A primary contributor to these settlements is identified as the utilization of rock materials sourced from tunnel construction, incorporated into the lower subgrade without the requisite soil mixing to achieve an appropriate particle size distribution. This study employs numerical analysis to evaluate the efficacy of partial reinforcement in reducing settlements in rock-filled lower subgrades. Column-shaped reinforcement areas strategically positioned at regular intervals in the lower subgrade induce soil arching in the upper subgrade, leading to a concentration of soil loads on the reinforced areas and consequent settlement reduction. The analysis employs finite element methods to investigate the influence of the size, stiffness, and spacing of the reinforced areas on settlement reduction in the lower subgrade. The numerical results guide the formulation of an optimal design approach, proposing a method to determine the minimum spacing required for reinforcements to effectively limit settlements within acceptable bounds. This research contributes valuable insights into addressing the challenges associated with settlement in concrete slab tracks, offering a basis for informed decision-making in railway infrastructure management.

Effect of Na+ ion on Changes in Hydraulic Conductivity and Chemical Properties of Effluent of Reclaimed Sandy Soil Column (토양중 Na+ 이온이 간척지 토주의 수리전도도와 용출수의 화학성 변화에 미치는 영향)

  • Ryu, Jin-Hee;Chung, Doug-Young;Yang, Chang-Hyu;Lee, Sang-Bok;Choi, Weon-Young;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.454-459
    • /
    • 2009
  • In order to identify the effect of soil salinity on saturated hydraulic conductivity in reclaimed paddy soils, we established the soil columns uniformly packed with soils collected at every 20 cm up to 60 cm from the reclaimed paddy area with high and low salinity which has been cultivated rice plants for the last 30 years. The soil textures were sandy loam and loamy sand for high-salinity and low-salinity topsoils, respectively. For high-salinity and low-salinity soils the ECes were ranged from 25.2 to $37.8dS\;m^{-1}$ and 3.0 to $3.4dS\;m^{-1}$ while the ESPs were ranged from 7.70 to 20.84 % and from 5.12 to 11.33 %, respectively. The bulk densities of the soil columns were adjusted to $1.15{\pm}0.03g\;cm^{-3}$. The results of the soil column experiments shows that the stabilized saturated hydraulic conductivity of low-salinity soil was $0.62cm\;hr^{-1}$ at the topsoil while there were little water flow at the bottom of the soil columns packed with high-salinity soils. After removal of $Na^+$ ions with $1N\;NH_4OAc$ from the high-salinity soil, Ksat of the saline soil was drastically increased to $0.23cm\;hr^{-1}$. Soil columns of high-salinity topsoil treated with four different concentration of NaCl influent after removal of soluble and exchangeable cations with $1N\;NH_4OAc$ show Ksat in the range of $0.1{\sim}0.15cm\;hr^{-1}$ and the Ksat slightly decreased as the concentration of NaCl influent was increasing. Conclusively, we could assume that $Na^+$ can be significantly contributed to the saturated hydraulic conductivity in newly reclaimed sandy soil.

Repellent and Insecticidal Activity of Sequential Extracting Fractions Obtained from BPH-Resistant Rice Varieties against Brown Planthopper (Nilaparvata lugens) (벼멸구 저항성벼 품종 추출분획물의 기피 및 살충 활성)

  • Kim, Sung-Eun;Kim, Young-Doo;Kim, Bo-Kyoung;Ko, Jae-Kwon;Chun, Jae-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.2
    • /
    • pp.124-130
    • /
    • 2006
  • Rice plant extracts of brown planthopper (BPH) resistant rice varieties, Jangseongbyeo (JSB) and Hwacheongbyeo (HCB) at different growth stages (seedling, tillering, heading and ripening) were sequentially fractioned using hexane, ethyl ether, ethyl acetate, butanol, and distilled water. The extracts were applied to BPH susceptible rice variety, Dongjjnbyeo (DJB), to investigate the insecticidal and repellent effects against BPH. BPH insecticidal effects were not clearly observed with almost all of the extract fractions obtained from both JSB and HCB varieties for 12 h, whereas the ethyl ether and hexane extract fractions showed about 10 to 30% of BPH mortality in 24 to 48 h of application periods. An effective BPH repellent activity was found with the applications of ethyl ether extract fractions obtained from JSB variety. The extract fractions obtained from HCB variety did not show any different repellence among the various fractions. The BPH repellent effects of the extract fractions obtained at different growth stages of either JSB or HCB varieties did not show any correlations. The effect of ethyl ether fraction on BPH repellent was continually increased by 30 h after treatment and thereafter decreased. In addition, the first sub-fraction separated by a flash column chromatography eluted with chloroform:methanol (9:1, v/v) from the BPH effective ethyl ether faction in JSB variety might be meaningful to repel BPH from BPH susceptible target rice plants. The results indicated that the ethyl ether fraction obtained from JSB was higher in repellent activity than in insecticidal activity, and suggesting that there might be specific substance(s) in the first sub-fraction (sF1) of the ethyl ether fraction in JSB that could provide repellent activity against BPH.

Hydrodynamic Dispersion Characteristics of Multi-soil Layer from a Field Tracer Test and Laboratory Column Experiments (현장추적자시험과 실내주상실험을 이용한 복합토양층의 수리분산특성 연구)

  • Kang, Dong-Hwan;Yang, Sung-Il;Kim, Tae-Yeong;Kim, Sung-Soo;Chung, Sang-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • This study analyzed for hydrodynamic dispersion characteristics of multi-soil layer (Silt and clay, Find sand, Coarse sand), data of a field tracer test on the multi-soil layer and data of laboratory column experiments on the samples on each soil layers. Through the analysis of permeability and flow, MS (Silt and clay) and FS (Fine sand), which were low effective porosity, were higher average linear velocity while CS (Coarse sand), which was high effective porosity, was higher hydraulic conductivity. Hydraulic conductivity function based on average soil particle diameter was assumed Y=$3.49{\times}10^{-8}e^{15320x}$ and coefficient of determination was 0.90. Average linear velocity function based on average soil particle diameter was assumed Y=$1.88{\times}10^{-7}e^{11459x}$ and coefficient of determination was 0.81. Longitudinal dispersivity function based on average soil particle diameter was Y = 0.00256$e^{5971x}$ and coefficient of determination was 0.98. According to the linear regression analysis of average linear velocity and longitudinal dispersivity, assumed function was Y = 21.7527x + 0.0063, and coefficient of determination was 0.9979. The ratio of field scale/laboratory scale was 54.09, it exhibited scale-dependent effect of hydrodynamic dispersion. Field longitudinal dispersivity (1.39m) was 7.47 times as higher than longitudinal dispersivity estimated by the methods of Xu and Eckstein (1995). Hydrodynamic dispersion on CS layer was occurred mainly by diffusion flow in the test aquifer.

Materialistic Characterization of Waste Egg Shell and Fundamental Studies for Its Application to Wastewater Treatment (폐달걀껍질의 활용을 위한 물성조사 및 폐수처리 응용에의 기초연구)

  • Kuh, Sung-Eun;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.733-742
    • /
    • 2000
  • Fundamental materialistic characterization and adsorption/neutralization behavior of waste egg shell for heavy metal ion have been studied for its application to wastewater treatment. To investigate the structural change and thermal decomposition characteristics of egg shell. X-ray diffraction and FT-IR analysis were conducted for egg shell treated at $105^{\circ}C$ and $700^{\circ}C$, respectively. For the result of FT-IR analysis, the sample treated at $700^{\circ}C$ showed a reduced C-O absorption band compared with that of egg shell treated at $105^{\circ}C$, which may be due to the $CO_2$ release. Unlike to the result of FT-IR analysis, the XRD patterns of egg shell were almost similar for the cases of $105^{\circ}C$ and $700^{\circ}C$ treatment. however, characteristic diffraction pattern of CaO was observed for $850^{\circ}C$ treatment, at which $CaCO_3$ is known to be completely converted to CaO. TGA/DTA analysis showed a slow decline in weight loss up to $600^{\circ}C$ and, for $600{\sim}800^{\circ}C$ range, the weight loss became drastic by reason of $CO_2$ discharge, which was accompanied by an appearance of major endothermic peak. The ratio of practical breakthrough time to ideal one, total transfer unit, and mass transfer coefficient were observed to be increased as the adsorption was progressed in a multiple-column fixed-bed reactor using egg shell as an adsorbent, which signified the distribution effect of mass transfer for continuous adsorption reaction. The neutralization effect of egg shell for several types of acidic wastewater made of different mineral acids was not much different from each other except for the case of $H_2SO_4$, for which the neutralization reaction was thought to be retarded by the formation of gypsum.

  • PDF