Effect of Na+ ion on Changes in Hydraulic Conductivity and Chemical Properties of Effluent of Reclaimed Sandy Soil Column

토양중 Na+ 이온이 간척지 토주의 수리전도도와 용출수의 화학성 변화에 미치는 영향

  • Received : 2009.09.21
  • Accepted : 2009.10.25
  • Published : 2009.12.30

Abstract

In order to identify the effect of soil salinity on saturated hydraulic conductivity in reclaimed paddy soils, we established the soil columns uniformly packed with soils collected at every 20 cm up to 60 cm from the reclaimed paddy area with high and low salinity which has been cultivated rice plants for the last 30 years. The soil textures were sandy loam and loamy sand for high-salinity and low-salinity topsoils, respectively. For high-salinity and low-salinity soils the ECes were ranged from 25.2 to $37.8dS\;m^{-1}$ and 3.0 to $3.4dS\;m^{-1}$ while the ESPs were ranged from 7.70 to 20.84 % and from 5.12 to 11.33 %, respectively. The bulk densities of the soil columns were adjusted to $1.15{\pm}0.03g\;cm^{-3}$. The results of the soil column experiments shows that the stabilized saturated hydraulic conductivity of low-salinity soil was $0.62cm\;hr^{-1}$ at the topsoil while there were little water flow at the bottom of the soil columns packed with high-salinity soils. After removal of $Na^+$ ions with $1N\;NH_4OAc$ from the high-salinity soil, Ksat of the saline soil was drastically increased to $0.23cm\;hr^{-1}$. Soil columns of high-salinity topsoil treated with four different concentration of NaCl influent after removal of soluble and exchangeable cations with $1N\;NH_4OAc$ show Ksat in the range of $0.1{\sim}0.15cm\;hr^{-1}$ and the Ksat slightly decreased as the concentration of NaCl influent was increasing. Conclusively, we could assume that $Na^+$ can be significantly contributed to the saturated hydraulic conductivity in newly reclaimed sandy soil.

전북 부안군 소재 계화도간척지 시험포장에서 토양의 염류가 논토양의 투수성에 미치는 영향을 알고자 염농도가 높은 지점과 낮은 지점을 대상으로 시료를 채취하여 토양의 물리 화학성을 조사한 결과는 다음과 같다. 시험토양은 포화침출액 전기전도도($EC_{e}$)가 고염지 표토 $25.2dS\;m^{-1}$, 고염지 심토 $37.8dS\;m^{-1}$, 저염지 표토 $3.0dS\;m^{-1}$, 저염지 심토 $3.4dS\;m^{-1}$로 시험토양을 염류토양 분류기준에 의거 분류한 결과, 고염지 표토는 saline soil, 고염지 심토는 saline-sodic soil이었고 저염지 표토 및 심토는 일반 토양(normal soil)에 해당되었다. 토주실험 결과 저염지 표토의 포화수리전도도 (Ksat)는 $0.623cm\;hr^{-1}$이었으나, 고염지 표토에서는 용출수의 하향이동이 거의 일어나지 않았다. 고염지 표토를 토양 무게에 대하여 1:2의 비율로 증류수, 1N NH4OAc, 0.1eq L-1oxalic acid로 연이어 세척하여 수용성 및 치환성 이온을 부분 제거하고 컬럼에 충전하여 포화수리전도도를 측정한 결과, $K_{sat}$값은 세척전에 투수가 거의 일어나지 않았던 것에 비하여 크게 증가하여 $0.68cm\;hr^{-1}$을 나타내었다. 세척비율 1:3과 1:7에서 같은 방법으로 포화수리전도도를 측정한 결과 $K_{sat}$값은 각각 $0.71cm\;hr^{-1}$, $0.73cm\;hr^{-1}$을 나타내었고 토양에 대한 희석요인이 증가할수록 $K_{sat}$값은 더 증가하는 경향을 나타냈다. 고염지 표토 토양을 $1N\;NH_4OAc$로 1시간 진탕 세척하여 수용성 및 치환성 양이온의 대부분을 제거한 후 컬럼에 충전하여 포화수리전도도를 측정한 결과, $K_{sat}$값은 $0.23cm\;hr^{-1}$으로 크게 증가하였고, 수용성 및 치환성 양이온을 제거한 고염지 표토 토주의 하단에 NaCl용액을 농도별로 상향 포화시켜 처리한 후 포화수리전도도를 측정한 결과 $K_{sat}$값은 NaCl 처리 농도별로 $0.13{\sim}0.15cm\;hr^{-1}$을 나타내었으며 NaCl의 처리 농도가 증가함에 따라 $K_{sat}$값은 더 낮아지는 경향을 보였다.

Keywords

References

  1. Ahmed, S., L.D. Swindale, and S.A. EI-Swaify. 1969. Effects of adsorbed cations on physical properties of tropical red earths and tropical black earhs. Eur. J. Soil. Sci. 20:255-268 https://doi.org/10.1111/j.1365-2389.1969.tb01572.x
  2. Alperovitch, N.,I. Shainberg, and R. Keren. 1981. Specific effect of magnesium on the hydraulic conductivity of sodic soils. Eur. J.Soil Sci. 32:543-554 https://doi.org/10.1111/j.1365-2389.1981.tb01728.x
  3. Alperovitch, N.,I. Shainberg, R. Keren, and M.J. Singer. 1985.Effect of clay mineralogy and aluminum and iron oxides on the hydraulic conductivity of clay-sand mixtures. Clay and Clay minerals. 33:443-450 https://doi.org/10.1346/CCMN.1985.0330511
  4. Dikinya, Oagile, Christoph Hinz and Graham Aylmore. 2004.Dispersion and re-deposition of colloidal particles and their effects on hydraulic conductivity in sandy soils. SuperSoil 2004. 3rd Australian New Zealand Soils Conference
  5. Frenkel, H., Goertzen, J.O., and Roades, J.D. 1978. Effects of clay type and content, exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity.Soil Sci. Soc. Am. J. 42:32-39 https://doi.org/10.2136/sssaj1978.03615995004200010008x
  6. Keren, R. and M.J. Singer. 1988. Effect of low electrolyte concentration on hydraulic conductivity of sodium/calciummontmorillonite-sand system. Soil Sci. Soc. Am. J. 52:368-373 https://doi.org/10.2136/sssaj1988.03615995005200020012x
  7. Koo, J.W. and W. Nham. 1986. Effects of soil hydraulic conductivity on reclaiming salt-affected soils. Bulletin of the Agricultural college, Chonbuk National University. 17:129-135
  8. Michaels, A.S. and C.S. Lin. 1954. Permeability of Kaolinite. Industry and Engineering Chemistry. 46:38-45
  9. NIAST. 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea
  10. Pupisky, H. and J. Shainberg. 1979. Salt effects on the hydraulic conductivity of a sandy soil. Soil Sci. Soc. Am. J. 43:429-433 https://doi.org/10.2136/sssaj1979.03615995004300030001x
  11. Quirk, J.P., and R.K. Schofield. 1955. The effect of electrolyte concentration on soil permeability. J. Soil Sci. 6:163-178 https://doi.org/10.1111/j.1365-2389.1955.tb00841.x
  12. Rao, S.N. and P.K. Mathew. 1995. Effects of exchangeable cations on hydraulic conductivity of a marine clay. Clay and Clay Minerals. 43:433-437 https://doi.org/10.1346/CCMN.1995.0430406
  13. Shainberg, I.,R. Keren, N. Alperovitch, and D. Goldstein. 1987. Effect of exchangeable potassium on the hydraulic conductivity of smectite-sand mixtures. Clay and Clay Minerals. 35:305-310 https://doi.org/10.1346/CCMN.1987.0350408
  14. Shainberg, I.,N. Alperovitch, and R. Keren. 1988. Effect of magnessium on the hydraulic conductivity of Na-smectite-sand mixtures. Clay and Clay Minerals. 36:432-438
  15. U.S. Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. USDA Agriculture Handbook No. 60. Washington D. C.
  16. Yoo, C.H., J.G. Kim, S.Y. Choi, G.H. Cho, S.J. Yoo, J.D. So, and G.S. Rhee. 1993. Studies on amelioration of soil physico-chemical properties and rice yield in sandy tidal saline paddy soil. J. Kor. Soc. Soil Sci. Fert. 26:241-248
  17. Yoo, S.H. and S.M. Lee. 1988. Laboratory study on changes in hydraulic conductivity and chemical properties of effluent of soil during desalinization. J. Kor. Soc. Soil Sci. Fert. 21:3-10
  18. 조성진, 박천서, 엄대익 등 11명. 2002. 4정 토양학. p97-98. 향문사