• Title/Summary/Keyword: column effect

Search Result 2,095, Processing Time 0.033 seconds

A Study on the Seismic Performance Improvement of Mid and Low-Rise RC Grid Structures Using Steel Slab Hysteretic Damper (강재 슬래브 이력형 댐퍼(SSHD)를 이용한 중·저층 RC 격자 구조물의 내진성능 향상에 관한 연구)

  • Kim, Dong Baek;Lee, In Duk;Choi, Jung Ho
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.418-426
    • /
    • 2019
  • Purpose: After analyzing the seismic capability of low-rise RC grid structures with insufficient seismic performance, the purpose of the project is to install steel slab hysteretic dampers (SSHD) to improve the seismic performance of beams and columns, and to suggest measures to minimize damage to the structure and human damage when an earthquake occurs. Method: The evaluation of the seismic performance of a structure is reviewed based on the assumption that the seismic performance is identified for the grid-type subway systems that are not designed to be seismic resistant and the installation of an SSHD system, a method that minimizes construction period, if insufficient, is required. Result: After the application and reinforce of structure with SSHD, and the results of eigenvalue analysis are as follows. The natural periodicity of longitudinal direction was 0.55s and that of vertical direction was 0.58s. Conclusion: As results of cyclic load test of structure with SSHD, the shear rigidity of damper is 101%, the energy dissipation rate is 108% and, plastic rotation angle of all column and beam is satisfied for $I_o$ level and therefore it is judged that the reinforce effect is sufficient.

Study on Determination of Design Factor of Bioreactor for Sulfate Reduction in Mine Drainage (광산배수 내 황산염 저감을 위한 생물반응기의 설계인자 도출 연구)

  • Kim, Kang-Ho;Kang, Chan-Ung;Kim, Sun-Joon;Kim, Tae-Heok;Ji, Won-Hyun;Jang, Hang-Seok;Park, Hyun-Sung
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.527-537
    • /
    • 2018
  • Column tests of a sulfate reducing bacteria (SRB) bioreactor were conducted to determine the design factors for sulfate-rich mine drainage. Various substrates were applied to the bioreactor, including cow manure and its mixture with a mushroom compost, with rice straw and limestone as subsidiary materials. This procedure provided a removal efficiency of up to 82% of the total sulfur with the mixture of cow manure (70%), mushroom compost (10%) and rice straw (20%), and higher efficiencies were observed after 2 days of retention time. In the downflow condition of the flow direction, oxygen supply and re-oxidation of the sulfates occurred, causing a decrease in sulfate removal efficiency. The addition of an inorganic sludge containing heavy metals, which was intended for production of metal-sulfides in the bioreactor, had a negative effect on the long-term operation owing to arsenic release and toxicity to the SRB. The results thus show that a bioreactor using a mixed substrate with cow manure and operating in the downflow direction could reduce sulfates and total dissolved sulfur content; this process confirms the applicability of the SRB bioreactor to sulfate-rich saline drainage.

A Study on the Light Extinction Characteristics in the Main Channel of Nakdong River by Monitoring Underwater Irradiance in Summer (수중 광량 모니터링을 통한 하절기 낙동강 본류 소광 특성 연구)

  • Kang, Mi-Ri;Min, Joong-Hyuk;Choi, Jungkyu;Park, Suyoung;Shin, Changmin;Kong, Dongsoo;Kim, Han Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.632-641
    • /
    • 2018
  • Algal dynamics is controlled by multiple environmental factors such as flow dynamics, water temperature, trophic level, and irradiance. Underwater irradiance penetrating from the atmosphere is exponentially decreased in water column due to absorption and scattering by water molecule and suspended particles including phytoplankton. As the exponential decrease in underwater irradiance affects algal photosynthesis, regulating their spatial distribution, it is critical to understand the light extinction characteristics to find out the mechanisms of algal dynamics more systematically. Despite the significance, the recent data have been rarely reported in the main stream areas of large rivers, Korea. In this study, the euphotic depths and light extinction coefficients were determined by monitoring the vertical variation of underwater irradiance and water quality in the main channel of Nakdong River near Dodong Seowon once a week during summer of 2016. The average values of euphotic depth and light extinction coefficient were 4.0 m and $1.3m^{-1}$, respectively. The degree of light extinction increased in turbid water due to flooding, causing an approximate 50 % decrease in euphotic depth. Also, the impact was greater than the self-shading effect during the periods of cyanobacterial bloom. The individual light extinction coefficients for background, total suspended solid and algal levels, frequently used in surface water quality modeling, were determined as $0.305m^{-1}$, $0.090m^{-1}/mg{\cdot}L^{-1}$, $0.013m^{-1}/{\mu}g{\cdot}L^{-1}$, respectively. The values estimated in this study were within or close to the ranges reported in literatures.

Soil Carbon Storage in Upland Soils by Biochar Application in East Asia: Review and Data Analysis (바이오차를 이용한 밭 토양 탄소 저장: 동아시아 지역 연구 리뷰 및 데이터 분석)

  • Lee, Sun-Il;Kang, Seong-Soo;Choi, Eun-Jung;Gwon, Hyo-Suk;Lee, Hyoung-Seok;Lee, Jong-Mun;Lim, Sang-Sun;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.219-230
    • /
    • 2021
  • BACKGROUND: Biochar is a solid material converted from agricultural biomass such as crop residues and pruning branch through pyrolysis under limited oxygen supply. Biochar consists of non-degradable carbon (C) double bonds and aromatic ring that are not readily broken down by microbial degradation in the soils. Due to the recalcitrancy of C in biochar, biochar application to the soils is of help in enhancing soil carbon sequestration in arable lands that might be a strategy of agricultural sector to mitigate climate change. METHODS AND RESULTS: Data were collected from studies on the effect of biochar application on soil C content conducted in East Asian countries including China, Japan and Korea under different experimental conditions (incubation, column, pot, and field). The magnitude of soil C storage was positively correlated (p < 0.001) with biochar application rate under field conditions, reflecting accumulation of recalcitrant black C in the biochar. However, The changes in soil C contents per C input from biochar (% per t/ha) were 6.80 in field condition, and 12.58 in laboratory condition. The magnitude of increment of soil C was lower in field than in laboratory conditions due to potential loss of C through weathering of biochar under field conditions. Biochar production condition also affected soil C increment; more C increment was found with biochar produced at a high temperature (over 450℃). CONCLUSION: This review suggests that biochar application is a potential measures of C sequestration in agricultural soils. However, as the increment of soil C biochar was affected by biochar types, further studies are necessary to find better biochar types for enhanced soil C storage.

Anti-cancer and Anti-microbial Effect of the Fraction Isolated from Pyrus ussuriensis Leaves (산돌배나무(Pyrus ussuriensis) 잎 분획물의 항암 및 항균활성에 관한 연구)

  • Lee, Chang-Eon;Kim, Young-Hun;Lee, Byung-Guen;Lee, Do-Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.136-141
    • /
    • 2011
  • This study was conducted to confirm the application as ingredients of cosmetics through an examination of the function for anti-cancer and anti-microbial of the fraction isolated from Pyrus ussuriensis leaves. The dried leaf of P. ussuriensis were extracted with acetone-$H_{2}O$ (6:4, v/v), concentrated and fractionated with the upper layer of acetone on a separatory funnel. Each fraction was freeze dried, then a portion of acetone soluble powder was chromatographed on a Sephadex LH-20 column using a series of aqueous methanol as eluents and also used the MIC-gel using a series of aqueous methanol as developing solvent. The isolated compounds were identified by silica-gel TLC. The growth inhibition activity was measured using the MTT assay by the mouse meltioma (B16F10) cell. The cancer cell growth inhibition rate of fractions isolated from P. ussuriensis leaf was 80%. In anti-microbial activity test, the fraction of P. ussuriensis with 0.25 mg/disc resulted in the clear zone of 1.3 cm and 2 cm for Staphylococcus aureus and S. epidermidis of gram positive bacillus, respectively. In Escherichia coli of gram negative bacillus, the fraction with 0.5 mg/disc resulted in the clear zone of 1.1 cm~1.5 cm each fraction. From these results, we confirmed that acetate fraction of P. ussuriensis has a great potential as a natural ingredients with a anti-cancer and anti-microbial source.

Oxalate Chelating Activity of Egg White Proteins and Their Hydrolysates

  • Holipitiyage Shyami Rashmiki, Holipitiya;Palihawadanege Iresha Lakmini, Fernando;Ethige Chathura Nishshanka, Rathnapala;Alakolange Gedara Achala Wimukthika, Alakolanga;Edirisinghe Dewage Nalaka Sandun, Abeyrathne;Ki-Chang, Nam
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.221-228
    • /
    • 2022
  • Major egg white proteins and their hydrolysates serve as functional food ingredients that have certain metal-chelating properties. Employing egg white proteins and their hydrolysates to scavenge dietary oxalates is anticipated to have beneficial effect in the prevention of kidney stones. The objective of this study was to determine the biogenic oxalate-chelating activity of ovalbumin, ovomucin, and ovotransferrin and their hydrolysates. To prepare oxalate extracts, 30 mL of 0.25 N HCl was added to separately to 0.5 g of dried spinach and starfruit powders followed by boiling for 15 min, and after cooling, the addition of a further 20 mL of 0.25 N HCl. Having prepared these extracts, ovalbumin, ovomucin, and ovotransferrin and their hydrolysates were separately mixed with oxalate extracts and incubated at 3℃ for 24 h. Following centrifugation, supernatants were analyzed by HPLC using a reverse-phase C18 column coupled with a diode array detector. We found that all assessed proteins and their hydrolysates showed biogenic oxalate-chelating activity against the oxalates of spinach. In contrast, however, only ovalbumin, ovalbumin-hydrolysate, and ovomucin showed chelating activity (57.10%±8.84%, 85.44%±5.30%, 73.20%±4.13%, respectively) against the oxalates of starfruit (P<0.05). Overall, hydrolyzed ovalbumin was identified as the most effective chelator of the oxalates both spinach and starfruit. In this study, we thus established that the assessed egg white proteins and their hydrolysates have oxalate-chelating activity in vitro, thereby indicating that these compounds have potential utility as nutraceuticals for the chelation of dietary oxalate. However, further research will be necessary to verify their oxalate-chelating activities against different fruits and vegetables and under specific in vivo conditions and against purified oxalate.

Effect of Culture Media on Production of Biomass, Fatty Acid, and Carotenoid in a Newly Isolated Mychonastes sp. (신규 분리된 Mychonastes sp.의 생장, 지방산 및 색소 생산에 생장배지가 미치는 영향)

  • Yim, Kyung June;Jang, Hyun-Jin;Park, Yeji;Nam, Seung Won;Hwang, Byung Su;Jung, Ji Young;Lee, Chang Soo;Kim, Z-Hun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • This study examined the growth, fatty acid (FA) content, and carotenoids of a newly isolated freshwater microalga, Mychonastes sp. 246, in various culture media. The appropriate temperature and light intensity for culturing Mychonastes sp. 246 were determined as 18℃-22℃ and 200-250 µmol/m2/s using a high throughput photobioreactor. The microalgal cells were cultivated in 0.5 L bubble column photobioreactors using BG11, Bold's Basal media, and f/2 media. According to the growth results of the microalgae, BG11, among the tested media, showed the highest biomass concentrations (3.5 ± 0.1 g/L in 10 d). To enhance the biomass growth of the microalgae, the N:P ratio in BG11 was manipulated from 45:1 to 7:1 based on the stoichiometric cell composition. The biomass concentrations of Mychonastes sp. 246 grown on the manipulated BG11 (MBG) increased to 38% (4.6 ± 0.3 g/L in d) compared with the original BG11 (3.3 g/L). The FA content of the microalgae grown on the MBG was lower (8.4%) than that of the original BG11 (10.1%) while the FA compositions did not exhibit any significant differences. Furthermore, three kinds of carotenoids were identified in Mychonastes sp. 246, zeaxanthin, lutein, and β-carotene. These results suggest an effective strategy for increasing biomass concentrations, FA content, and carotenoids of microalgae by performing a simple N:P adjustment in the culture media.

Effect of Operating Variables on the Morphology of Precipitated Calcium Carbonate in a Slurry Bubble Reactor (슬러리 기포탑 반응기에서 침강성 탄산칼슘의 모폴로지에 대한 조업변수들의 영향)

  • Hwang, Jung-Woo;Lee, Yoong;Lee, Dong-Hyun
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.124-131
    • /
    • 2010
  • Effects of $Ca(OH)_2$ concentration (0.16~0.64 wt%), surfactant concentration (2~16 wt%), total volumetric flow rate (3~6 L/min) and $CO_2$ volume fraction $(0.3{\sim}0.6)$ on morphology, crystal structure, mean particle diameter, aggregation and specific surface area of the precipitated $CaCO_3$ were investigated in the slurry bubble column reactor. Experiments were carried out in acrylic reactor ($0.11\;m-ID{\times}1.0\;m-high$) with a internal tube ($0.04\;m-ID{\times}1.0\;m-high$h). The reaction time of $CaCO_3$ synthesis decreased with adding Dispex N40 of the anionic surfactant. The reaction rate of $Ca(OH)_2$ increased with increasing the volumetric flow rate of $CO_2$. From SEM images, the single crystal of $CaCO_3$ increased with increasing the reaction rate in the saturated concentration of $Ca(OH)_2$ (0.16 wt %) and the concentration of Dispex N40 (2 wt%). The mean particle size of $CaCO_3$ varied with adding Dispex N40. In addition, the specific surface area of $CaCO_3$ increased with adding of surfactant (2 wt%) from $35m^2/g$ to $44m^2/g$ at the volumetric flow rate of $CO_2$ (0.9 L/min) and the concentration of $Ca(OH)_2$(0.64 wt %).

Application of a Fictitious Axial Force Factor to Determine Elastic and Inelastic Effective Lengths for Column Members of Steel Frames (강프레임 기둥 부재의 탄성 및 비탄성 유효좌굴길이 산정을 위한 가상축력계수의 적용)

  • Choi, Dong Ho;Yoo, Hoon;Lee, Yoon Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.81-92
    • /
    • 2010
  • In design of steel frames, it is generally believed that elastic system buckling analysis cannot predict real behaviors of structures, while inelastic system buckling analysis can give informative buckling behaviors of individual members considering inelastic material behavior. However, the use of Euler buckling equation with these system buckling analyses have the inherent problem that the methods evaluate unexpectedly large effective lengths of members having relatively small axial forces. This paper proposes a new method of obtaining elastic and inelastic effective lengths of all members in steel frames. Considering a fictitious axial force factor for each story of frames, the proposed method determines the effective lengths using the inelastic stiffness reduction factor and the iterative eigenvalue analysis. In order to verify the validity of the proposed method, the effective lengths of example frames by the proposed method were compared to those of previously established methods. As a result, the proposed method gives reasonable effective lengths of all members in steel frames. The effect of inelastic material behavior on the effective lengths of members was also discussed.

An Empirical Study on Development of Traffic Safety Facilities for Safe Autonomous Vehicle Operation in Construction Areas (자율주행자동차의 공사구간 안전주행 지원을 위한 교통안전시설물 개발 실증 연구)

  • Jiyoon Kim;Jisoo Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.163-181
    • /
    • 2023
  • Improving the detection performance of facilities corresponding to the sensors of autonomous vehicles helps driving safety. In the road and transportation field, research is being conducted to improve the detection performance of sensors by road infrastructure or facilities. As part of this on the development of autonomous driving support infrastructure, the shape of traffic cones and drums to ensure sufficient LiDAR detection performance even rainy conditions and maintain the line-of-sight guidance function in construction zones improvement effect. The principle was to increase reflection performance and ensure no significant difference in shape from existing facilities. Traffic cones were manufactured in square pyramid shapes instead of cones, and drums were manufactured in hexagonal and octagonal pillar shapes instead of cylinders. LiDAR detection data for the facility was confirmed on a clear day and with 20 mm/h and 40 mm/h rainfall. The detection performance of the square pyramid-shaped traffic cone and octagonal column-shaped drum was to the existing facility. On the other hand, deviations occurred due to repeated measurements, and significance could not be confirmed through statistical analysis. By reflecting these results, future studies will seek a form in which data can be obtained uniformly despite the diversity of measurement environments.