DOI QR코드

DOI QR Code

Study on Determination of Design Factor of Bioreactor for Sulfate Reduction in Mine Drainage

광산배수 내 황산염 저감을 위한 생물반응기의 설계인자 도출 연구

  • 김강호 (한국광해관리공단 광해기술원) ;
  • 강찬웅 (한양대학교 자원환경공학과) ;
  • 김선준 (한양대학교 자원환경공학과) ;
  • 김태혁 (한국광해관리공단 광해기술원) ;
  • 지원현 (한국광해관리공단 광해기술원) ;
  • 장항석 (한국광해관리공단 광해기술원) ;
  • 박현성 (한국광해관리공단 광해기술원)
  • Received : 2018.11.22
  • Accepted : 2018.12.20
  • Published : 2018.12.31

Abstract

Column tests of a sulfate reducing bacteria (SRB) bioreactor were conducted to determine the design factors for sulfate-rich mine drainage. Various substrates were applied to the bioreactor, including cow manure and its mixture with a mushroom compost, with rice straw and limestone as subsidiary materials. This procedure provided a removal efficiency of up to 82% of the total sulfur with the mixture of cow manure (70%), mushroom compost (10%) and rice straw (20%), and higher efficiencies were observed after 2 days of retention time. In the downflow condition of the flow direction, oxygen supply and re-oxidation of the sulfates occurred, causing a decrease in sulfate removal efficiency. The addition of an inorganic sludge containing heavy metals, which was intended for production of metal-sulfides in the bioreactor, had a negative effect on the long-term operation owing to arsenic release and toxicity to the SRB. The results thus show that a bioreactor using a mixed substrate with cow manure and operating in the downflow direction could reduce sulfates and total dissolved sulfur content; this process confirms the applicability of the SRB bioreactor to sulfate-rich saline drainage.

황산염 함량이 높은 광산배수를 대상으로 황산염환원균(Sulfate reducing bacteria, SRB)을 이용한 생물반응기의 설계인자를 도출하고자 컬럼실험을 수행하였다. 생물반응기의 기질물질로 우분을 기본으로 하여 버섯퇴비를 혼합하고, 보조제로써 볏짚, 석회석을 각각 혼합하여 적용하였다. 우분(70%), 버섯퇴비(10%), 볏짚(20%)을 기질물질로 사용하였을 때 최대 82%의 용존된 총 황 제거효율을 보였고, 체류시간은 2일 일 때 높은 효율을 보였다. 생물반응기 내 광산배수의 흐름이 상향류 일 때 배출수 내 환원형태의 황이 산소와 직접 접촉하면서 재산화되어 제거효율이 감소하는 것으로 나타났다. 황산염환원에 따른 금속 황화물 형성을 유도하기 위한 무기성 슬러지의 주입은 비소의 환원성 용해 및 SRB에 독성을 발현하여 생물반응기의 장기적 운영을 저해할 수 있다. 연구결과, 우분을 포함한 혼합기질물질을 활용한 하향류의 생물반응기가 황산염 및 용존된 총 황을 효과적으로 제거하였고, 이는 황산염 함유량이 높은 염수의 광산배수에서 적용이 가능할 것으로 판단된다.

Keywords

References

  1. Ahn, J.M., Yim, G.J., Jung, J.W., Ji, S.W., Cheong, Y.W., Park, H.S. and Choi, S.I., 2011. Applicable effectiveness of organic mixtures for treatment of acid mine drainage in SAPS. J. Korean Society of Mineral and Energy Resources Engineers, 48(1), 34-44.
  2. Bai, H., Kang, Y., Quan, H., Han, Y., Sun, J., and Feng, Y., 2013. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. Bioresource Technology, 128, 818-822. https://doi.org/10.1016/j.biortech.2012.10.070
  3. Behum P.T., Lefticariu, L., Bender, K.S., Segid, Y.T., Burns, A.S., and Pugh, C.W., 2011. Remediation of coal-mine drainage by a sulfate-reducing bioreactor: A case study from the Illinois coal basin, USA. Applied Geochemistry, 26, S162-S166. https://doi.org/10.1016/j.apgeochem.2011.03.093
  4. Castillo, J., Perez-Lopez, R., Caraballo, M.A., Nieto, J.M., Martins, M., Costa, M.C., Olías, M., Ceron, J.C., and Tucoulou, R., 2012. Biologically-induced precipitation of sphalerite-wurtzite nanoparticles by sulfate-reducing bacteria: implications for acid mine drainage treatment. Science of the Total Environment, 423, 176-184. https://doi.org/10.1016/j.scitotenv.2012.02.013
  5. Clyde, E., Champagne, P., Jamieson, H., Gorman, C., and Sourial, J., 2016. The use of a passive treatment system for the mitigation of acid mine drainage at the Williams Brothers Mine (California): pilot-scale study. J. Cleaner Production, 130, 116-125. https://doi.org/10.1016/j.jclepro.2016.03.145
  6. Deng, D., Weidhaas, J.L., and Lin, L.S., 2016. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage. J. Hazardous Materials, 305, 200-208. https://doi.org/10.1016/j.jhazmat.2015.11.041
  7. Hao, T., Xiang, P., Mackey, H.R., Chi, K., Lu, H., Chui, H., van Loosdrecht, M.C.M., and Chen, G.H., 2014. A review of biological sulfate conversions in wastewater treatment. Water Research, 65, 1-21. https://doi.org/10.1016/j.watres.2014.06.043
  8. Jing, Q., Zhang, M., Liu, X., Li, Y., Wang, Z., and Wen, J., 2018. Bench-scale microbial remediation of the model acid mine drainage: Effects of nutrients and microbes on the source bioremediation. International Biodeterioration & Biodegradation, 128, 117-121. https://doi.org/10.1016/j.ibiod.2017.01.009
  9. Johnson, D.B., 2014. Recent developments in microbiological approaches for securing mine wastes and for recovering metals from mine waters. Minerals, 4(2), 279-292. https://doi.org/10.3390/min4020279
  10. Johnston, R.B. and Singer, P.C., 2007. Redox reactions in the Fe-As-$O_2$ system. Chemosphere, 69(4), 517-525. https://doi.org/10.1016/j.chemosphere.2007.03.036
  11. Jung, S., Ji, S., Kang, H., Yim, G., and Cheong, Y., 2012. Biotechnology in passive treatment of acid mine drainage: A review. J. Korean Society of Mineral and Energy Resources Engineers, 49(6), 844-854. https://doi.org/10.12972/ksmer.2012.49.6.844
  12. Ko, M.S., Park, H.S., and Lee, J.U., 2016. Arsenic removal from mine drainage by biogenic FeS and feasibility study of sulfate reducing bioreactor. J. Korean Society of Mineral and Energy Resources Engineers, 53(6), 555-561. https://doi.org/10.12972/ksmer.2016.53.6.555
  13. Lakovleva, E., Makila, E., Salonen, J., Sitarz, M., Wang, S., and Sillanpaa, M., 2015. Acid mine drainage (AMD) treatment: Neutralization and toxic elements removal with unmodified and modified limestone. Ecological Engineering, 81, 30-40. https://doi.org/10.1016/j.ecoleng.2015.04.046
  14. Luo, X., Whang, C., Wang, L., Deng, F., Luo, S., Tu, X., and Au, C., 2013. Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chemical Engineering J., 220, 98-106. https://doi.org/10.1016/j.cej.2013.01.017
  15. Madzivire, G., Petrik, L.F., Gitari, W.M., Ojumu, T.V., and Balfour, G., 2010. Application of coal fly ash to circumneutral mine waters for the removal of sulphates as gypsum and ettringite. Minerals Engineering, 23(3), 252-257. https://doi.org/10.1016/j.mineng.2009.12.004
  16. Martins, M., Faleiro, M.L., Barros, R.J., Verissimo, A.R., Barreiros, M.A., and Costa, M.C., 2009. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. J. Hazardous Materials, 166(2-3), 706-713. https://doi.org/10.1016/j.jhazmat.2008.11.088
  17. McCauley, C.A., O'Sullivan, A.D., Milke, M.W., Weber, P.A., and Trumm, D.A., 2009. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. Water Research, 43(4), 961-970. https://doi.org/10.1016/j.watres.2008.11.029
  18. Neculita, C.M., Zagury, G.J., and Bussiere, B., 2007. Passive treatment of acid mine drainage in bioreactors using sulfatereducing bacteria. J. Environmental Quality, 36(1), 1-16. https://doi.org/10.2134/jeq2006.0066
  19. Newcombe, C.E. and Brennan, R.A., 2010. Improved passive treatment of acid mine drainage in mushroom compost amended with crab-shell chitin. J. Environmental Engineering-Asce, 136(6), 616-626. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000198
  20. Newman, D.K., Beveridge, T.J., and Morel, F. 1997. Precipitation of arsenic trisulfide by desulfotomaculum auripigmentum. Applied and Environmental Microbiology, 63(5), 2022-2028.
  21. Park, H.S., Ko, M.S., Lee, S.H., Hong, J.H., Cho, S.H., Yu, J.Y., Jo, J.H., and Lee, J.U., 2016. Activity evaluation of sulfate reducing bacteria for the sulfate removal in the mine drainage. J. Korean Society of Mineral and Energy Resources Engineers, 53(5), 387-397. https://doi.org/10.12972/ksmer.2016.53.5.387
  22. Sahinkaya, E., Yurtsever, A., Toker, Y., Elcik, H., Cakmaci, M., and Kaksonen, A.H., 2015. Biotreatment of As-containing simulated acid mine drainage using laboratory scale sulfate reducing upflow anaerobic sludge blanket reactor. Minerals Engineering, 75, 133-139. https://doi.org/10.1016/j.mineng.2014.08.012
  23. Sheoran, A.S., Sheoran, V., and Choudhary, R.P., 2010. Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: A review. Minerals Engineering, 23(14), 1073-1100. https://doi.org/10.1016/j.mineng.2010.07.001
  24. Tufano, K.J. and Fendorf, S., 2008. Confounding impacts of iron reduction on arsenic retention. Environmental Science and Technology, 42(13), 4777-4783. https://doi.org/10.1021/es702625e
  25. Yoo, K., Jeong, J., Sohn, J.S., and Lee, J.C., 2006. Application of sulfate-reducing bacteria for treatment of mine drainages. J. Korean Society of Mineral and Energy Resources Engineers, 43(2),160-167.
  26. Zhang, M. and Wang, H., 2014. Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage. Minerals Engineering, 69, 81-90. https://doi.org/10.1016/j.mineng.2014.07.010
  27. Zhang, M. and Wang, H., 2016. Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis. Minerals Engineering, 92, 63-71. https://doi.org/10.1016/j.mineng.2016.02.008

Cited by

  1. 광산배수 처리를 위한 세멘테이션 공정 중 구리제거효율에 대한 철분 응집의 영향 vol.28, pp.5, 2019, https://doi.org/10.7844/kirr.2019.28.5.74