• 제목/요약/키워드: column's length

검색결과 126건 처리시간 0.022초

Field behaviour geotextile reinforced sand column

  • Tandel, Yogendra K.;Solanki, Chandresh H.;Desai, Atul K.
    • Geomechanics and Engineering
    • /
    • 제6권2호
    • /
    • pp.195-211
    • /
    • 2014
  • Stone columns (or granular column) have been used to increase the load carrying capacity and accelerating consolidation of soft soil. Recently, the geosynthetic reinforced stone column technique has been developed to improve the load carrying capacity of the stone column. In addition, reinforcement prevents the lateral squeezing of stone in to surrounding soft soil, helps in easy formation of stone column, preserve frictional properties of aggregate and drainage function of the stone column. This paper investigates the improvement of load carrying capacity of isolated ordinary and geotextile reinforced sand column through field load tests. Tests were performed with different reinforcement stiffness, diameter of sand column and reinforcement length. The results of field load test indicated an improved load carrying capacity of geotextile reinforced sand column over ordinary sand column. The increase in load carrying capacity depends upon the sand column diameter, stiffness of reinforcement and reinforcement length. Also, the partial reinforcement length about two to four time's sand column diameter from the top of the column was found to significant effect on the performance of sand column.

New stability equation for columns in unbraced frames

  • Essa, Hesham S.
    • Structural Engineering and Mechanics
    • /
    • 제6권4호
    • /
    • pp.411-425
    • /
    • 1998
  • The effective length factor of a framed column may be determined by means of the alignment chart procedure. This method is based on many unrealistic assumptions, among which is that all columns have the same stiffness parameter, which is dependent on the length, axial load, and moment of inertia of the column. A new approximate method is developed for the determination of effective length factors for columns in unbraced frames. This method takes into account the effects of inelastic column behaviour, far end conditions of the restraining beams and columns, semi-rigid beam-to-column connections, and differentiated stiffness parameters of columns. This method may be implemented on a microcomputer. A numerical study was carried out to demonstrate the extent to which the involved parameters affect the K factor. The beam-to-column connection stiffness, the stiffness parameter of columns, and the far end conditions of restraining members have a significant effect on the K factor of the column under investigation. The developed method is recommended for design purposes.

Effective Length of Reinforced Concrete Columns in Braced Frames

  • Tikka, Timo K.;Mirza, S. Ali
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권2호
    • /
    • pp.99-116
    • /
    • 2014
  • The American Concrete Institute (ACI) 318-11 permits the use of the moment magnifier method for computing the design ultimate strength of slender reinforced concrete columns that are part of braced frames. This computed strength is influenced by the column effective length factor K, the equivalent uniform bending moment diagram factor $C_m$ and the effective flexural stiffness EI among other factors. For this study, 2,960 simple braced frames subjected to short-term loads were simulated to investigate the effect of using different methods of calculating the effective length factor K when computing the strength of columns in these frames. The theoretically computed column ultimate strengths were compared to the ultimate strengths of the same columns computed from the ACI moment magnifier method using different combinations of equations for K and EI. This study shows that for computing the column ultimate strength, the current practice of using the Jackson-Moreland Alignment Chart is the most accurate method for determining the effective length factor. The study also shows that for computing the column ultimate strength, the accuracy of the moment magnifier method can be further improved by replacing the current ACI equation for EI with a nonlinear equation for EI that includes variables affecting the column stiffness and proposed in an earlier investigation.

원형기둥-상자형보 접합부의 응력평가식 개발 (Development of Stress Evaluation Equation of Circular Column-Box Beam Connections)

  • 이주혁;김정환;박용명
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.227-234
    • /
    • 2003
  • This study presents the stress evaluation equations of circular column-box beam connection in steel frame piers. FEM analysis were carried out for circular column-box beam connection. Analysis models were made for design parameters such as joint angle, span length-width ratio(L/B), sectional-area ratio(S=A/sub w/A/sub f/), and circular column-box beam stiffness ratio(Ic/Ib). Analysis results were compared to the existing equation. Based on analysis results the stress evaluation equations of circular column-box beam connection are proposed by regression analysis.

  • PDF

ON COLUMN INVARIANT AND INDEX OF COHEN-MACAULAY LOCAL RINGS

  • Koh, Jee;Lee, Ki-Suk
    • 대한수학회지
    • /
    • 제43권4호
    • /
    • pp.871-883
    • /
    • 2006
  • We show that the Auslander index is the same as the column invariant over Gorenstein local rings. We also show that Ding's conjecture ([13]) holds for an isolated non-Gorenstein ring A satisfying a certain condition which seems to be weaker than the condition that the associated graded ring of A is Cohen-Macaulay.

기둥의 길이변화에 따른 전이슬래브 시스템의 압축성능 평가 (Evaluation on the Compression Capacity of Transfer Slab Systems according to the Variation of Column Length)

  • 심연주;최창식
    • 콘크리트학회논문집
    • /
    • 제28권6호
    • /
    • pp.695-702
    • /
    • 2016
  • 본 논문은 공동주택 아파트에 저층에 위치해 있는 필로티에서 사용되는 전이시스템의 성능을 평가한 것이다. 전이시스템은 2개의 층으로 구성이 되어 주로 벽식구조 아파트에서 낮은 층에 사용되며, 하부기둥의 갑작스런 단면변화가 있는 곳에 상부벽체에서 하부기둥까지 하중을 전달시킨다. 특히, 전이보는 자주 사용하는 전이시스템 중 하나이지만 낮은 시공성과 경제성의 단점을 가지고 있다. 따라서 기존의 연구에서 제시되어 있듯이 전이슬래브와 같은 전이시스템이 제안되었으며 연구가 진행되어 왔다. 본 연구에서는 전이슬래브의 압축성능을 검증하기 위해 축하중을 받는 필로티 전이시스템에 대한 실험이 수행되었다. 유한요소해석을 통해 최종적으로 2가지의 실험체가 결정이 되었으며, 결정된 전이슬래브 실험체는 기둥의 길이를 변수로 두었으며, 하부 기둥의 길이가 상부 벽체 길이의 40%와 50%로 나누었다. 실험을 통해 축하중을 받는 전이슬래브 시스템의 압축성능은 기둥의 길이에 영향을 받아 기둥의 길이가 벽체의 길이의 40%와 50%인 실험체 각각의 압축 성능은 설계하중보다 52%와 46% 높았다.

Size Measurements of Droplets Entrained in a Stagnant Bubbling Liquid Column

  • Jeong, Hae-Yong;No, Hee-Cheon;Song, Chul-Hwa;Chung, Moon-Ki
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.254-259
    • /
    • 1996
  • Phase Doppler particle analyze. (PDPA) is a instrument which can be used to obtain simultaneous size and velocity measurements in a multiphase flow. In this study, the size of the water droplets entrained from a bubbling surface of a stagnant liquid column is measured by PDPA with a specially designed transmitter of long focal length and large beam diameter. The test section tube is made of acryle with 18 mm I.D. and 900 mm length. The experimental data are obtained for the air superficial velocity between 0.7 m/s to 3.4 m/s at atmospheric pressure. The experimental results show that there exists large difference in the entrainment mechanism between the churn-turbulent flow and annular flow. Through the present study, the phase Doppler analyzer system is shown to be successfully applied to measure particle sizes larger than $2,000\mu\textrm{m}$ if a transmitter of long focal length is utilized.

  • PDF

반복수평재하시험을 통한 단일형현장타설말뚝의 거동분석 (Analysis of Horizontal Behavior of a Single Column/Shaft by Horizontal Two-way Pile Load Test)

  • 정상섬;송성욱;김병철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1132-1143
    • /
    • 2008
  • A single Column/Shaft which extended the pile to the column of the bridge with same diameter has better safety and economical profit, but it usually has larger lateral displacement due to lateral loads such as wind, earthquake, wave, etc. A series of horizontal pile load testing were performed to study the lateral behavior of single column/shaft with varying different free lengths and embedded pile lengths. Eight instrumented test piles were cast-in-placed by bonding strain gauges at certain locations on both faces of the pile to measure bending moment, from two-way loadings. Linear variable differential transformers(LVDTs) were installed to measure the lateral pile displacement. Based on this, it is found that the test single column/shaft with different free lengths shows different failure modes. If the test pile has a longer free length, the failure occurs at the near the ground surface, but the shorter one's failure occurs at the below the ground surface.

  • PDF

반복-수평력을 받는 프리캐스트기둥- RC기초 Anchor 접합부의 내력 실험 연구 (Strength Experimental Study on Precast Column-R.C. Foundation Anchor Joint Subjected to Cyclic Horizontal Loading)

  • 이호;정환목;차병기;변상민
    • 한국공간구조학회논문집
    • /
    • 제9권2호
    • /
    • pp.45-52
    • /
    • 2009
  • 이 논문은 반복-수평력을 받는 프리캐스트 기둥-RC 기초 Anchor 접합부의 반복-수평력에 대한 내력 특성을 규명하기 위함이다. 본 연구는 하부 기초에 프리캐스트 콘크리트 기둥과 기초를 Anchor식으로 접합한 콘크리트 구조체가 정확한 응력전달 경로 및 파괴 메커니즘에 있어서 기존의 콘크리트-강재 연결부와 어떠한 차이가 있는지 제시한다. 반복-수평력 작용하의 철근의 인발력 실험결과는 프리캐스트 기둥-RC 기초 Anchor 시공에 필요한 철근의 최소 필요 삽입 깊이를 제시한다. 또한, 실험을 통해 제시된 응력 전달 경로 및 파괴 메커니즘을 제품별 메뉴얼에 제시되어 있는 메커니즘과 비교, 검토함으로서 접합부의 명확한 응력전달 경로 및 파괴 메커니즘을 시공자의 요구 성능에 맞게 제시한다. 그러므로 본 연구를 통해 프리캐스트 콘크리트 기둥의 정확한 주근의 개수, 공칭직경, 정착 길이 등에 대한 최적의 설계 조건을 제시함으로써, 시공 시 이들에 대한 정확한 데이터를 제공한다.

  • PDF

기둥단면형상에 따른 무량구조시스템 강성변화에 관한 연구 (A study on stiffness of flat-plate system according to column section shape)

  • 강수민;이지웅;김욱종;이도범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.314-317
    • /
    • 2006
  • In the present study, design methodologies for effective width of slabs in slab-column connections were evaluated in comparison with the experimental results on the full-scale slab-column connections. The design methodologies are as follows: the methodology proposed by Jacob S. Grossman and the methodology proposed by Choi & Song. The former does not predict the stiffness change of the slab-column connection due to the change in the column section shape and the latter overestimates the stiffness when edge length of the column section in the loading direction is long. Accordingly, the equation to calculate the effective width of slabs should be modified to reflect the effect of the change in the column section shape.

  • PDF