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ON COLUMN INVARIANT AND INDEX
OF COHEN-MACAULAY LOCAL RINGS

JEE KoH AND KISUK LEE

ABSTRACT. We show that the Auslander index is the same as the
column invariant over Gorenstein local rings. We also show that
Ding’s conjecture ([3]) holds for an isolated non-Gorenstein ring A
satisfying a certain condition which seems to be weaker than the
condition that the associated graded ring of A is Cohen-Macaulay.

0. Introduction

A Cohen-Macaulay approximation was defined by Auslander and
Buchweitz for a Gorenstein local ring A as follows: Let M be an A-

module. An exact sequence of A-modules, 0 — Yy 2 Xu 2, M —
0, is called a Cohen-Macaulay approximation of M if projdimzgYy < oo
and X)s is a maximal Cohen-Macaulay module. In [2], Auslander in-
troduced the numerical invariant §(M) for any finite module M over a
Gorenstein local ring A: §(M) is defined to be the maximal rank of free
summands of X in a minimal Cohen-Macaulay approximation of M.
In [3, 4], Ding has studied the d-invariant of cyclic modules A/m"(i > 1)
and defined a new invariant index(A). He also conjectured that index(A)
is the same as ££(A), the generalized Loewy length of A.

It was proved in [8] that there are certain restrictions on the entries of
the maps in the minimal free resolutions of finitely generated modules
of infinite projective dimension over Noetherian local rings A. Using
these restrictions, some new invariants were introduced in [9]: They are
(see Definition 1.1): col(A) [resp. row(A)] for a number associated with
the columns [resp. rows| of the maps and crs(A) and drs(A), which are
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associated with the cyclic modules determined by regular sequences and
their Matlis duals. It was shown in [9, Proposition 1.4] that drs(A) is
equal to ¢£(A) if A is Cohen-Macaulay.

The purpose of this paper is to relate the (Auslander) index of a
Cohen-Macaulay local ring to some of the invariants considered above.

In Section 1, we show that for a Cohen-Macaulay local ring A, index
(A) can be described in terms of the columns of presenting matrices of
maximal Cohen-Macaulay modules without free summands (Proposition
1.5). We also show that index(A) = col(A) if A is Gorenstein (Corollary
1.7). As a consequence we obtain a result in [13] on the behavior of the
index of Gorenstein local rings under an extension of finite flat dimension
(Corollary 1.8). We also discuss some of properties concerning the 4-
invariant of Matlis dual of a module of finite length.

In Section 2, we obtain that for Gorenstein local rings A with infinite
residue fields the conjecture in [9] is equivalent to Ding’s conjecture in
[3], which asserts that index(A) = €¢(A). (A surprising counterexample
to Ding’s conjecture when the residue field is F» was given in [6].) The
main result (Theorem 2.1) of this paper is:

THEOREM. Let (A,m) be a non regular Cohen-Macaulay local ring
of dimension d. Suppose there is a system of parameters X = 21,...,Zq
such that the following two conditions () are satisfied: for some positive
integer 7,

i) m™1 C (x), but m" ¢ (x), and
ii) m”"l N Ik = mTIk for k = 1, .. ,d, where Ik = (.’Dl, cen ,:L‘k).
Then colcp(A) > r + 1. In particular, colopr(A) > C4(A).

This theorem immediately implies that Ding’s conjecture (or the con-
jecture in [9]) holds for Gorenstein local rings satisfying the condition (x)
because colopr(A) = index(A) and the inequality in the other direction
is shown to hold in [3] for Gorenstein local rings. We remark that the
condition (%) is at least weaker than the condition the associated graded
ring gr,(A) of A is Cohen-Macaulay which was assumed in showing the
equality in [5] because every minimal reduction satisfies (*) in this case
(the residue field has to be infinite so that there is a minimal reduction).

Although all rings we consider in this paper are commutative, Noe-
therian with identity, and all modules are unital, we emphasize the Noe-
therian property in our statements. We use the usual notation E(A/m)
for the injective hull of A/m and MY for Matlis dual, Hom4(—, E(A/m)).
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1. col{A) =index(A) over a Gorenstein local ring A

In this section we recall the invariants defined in [9], and the Auslan-
der index, index(A) and the generalized Loewy length ¢/(A). We also
state the basic properties of these invariants. In particular, we show
that col(A) is the same as index(A) over a Gorenstein local ring A.

DEFINITION 1.1. Let (A, m) be a Noetherian local ring. We denote
by @;(M) the ith map in a minimal resolution of a finitely generated A-
module M. We also use the usual notation Soc(M) = Hom4(A/m, M)
to denote the socle of M.

If projdim M < oo, we define col(M) = 1. If projdim M = oo, we
define

i) col(M) =: inf {¢ > 1: each column of ¢;(M) has an entry outside

m?, for all i > 1+ depth 4 }.
col(A) =: sup {col(M): M is a finitely generated A-module }.
We define the ‘socle number’ s(M) by s(M) :=inf {t > 1: Soc(M) €
miM}.

ii) crs(A4) =: inf {s(A/(z)): x is a maximal regular sequence }.

drs(A) =: inf {s((A/(z))V): x is a system of parameters of A }.

For a Cohen-Macaulay local ring (A4, m), we also define colcas (M) to be

the smallest £ > 1 such that each column of the presenting matrix of M

contains an element outside m! for a maximal Cohen-Macaulay module
M without free summands. We now define:

iii) colem(A) =: sup{coleap (M) : M is a maximal Cohen-Macaulay
module without free summands.}

We recall the definition of the generalized Loewy length of A:
20(A) = inf{t > 1 : m? C (x) for some system of parameters x}.

REMARKS 1.2. i) We may describe col(A) as follows ([11]):

col(A) = inf {t > 1 : each column of the presenting matrix ¢ of a
(d+1)-st syzygy module M contains an element outside m'}.

ii) We recall that for a Cohen-Macaulay local ring A, the equality
drs(A) = ¢¢(A) was shown in [9, Proposition 1.4.i)].

We now recall the basic properties of Auslander d-invariant: Let
(A, m) be a Cohen-Macaulay local ring with a canonical module w. For
a finitely generated A-module X, define f-rank(X):=rif X = A" U,
where U has no free summands. We note that this r is well defined
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because for any surjective map ¢ : X — A% ¢(A") = A® (¢(U) C mA®
since U has no free summands). We recall the definition of §(M):

§(M) := inf {f-rank(X) : X is a maximal Cohen-Macaulay module
and M is a homomorphic image of X}.

We now recall Cohen-Macaulay approximation established in [1]: For
each finitely generated A-module M, there is an exact sequence 0 —
Y — X — M — 0, where X is a maximal Cohen-Macaulay module
and Y is of finite injective dimension.

It is also known (see [2], [6] or [15]) that there is a unique (up to
isomorphism) minimal one which is denoted by

0—Yy — Xy — M —0,

with the property that if X is any maximal Cohen-Macaulay A-module
that maps onto M, then X maps onto Xyy.

The definition of §(M) and the properties of minimal Cohen-Macau-
lay approximation immediately imply:

1) if N = M/M;, then §(M) > §(N),

2) 6(M) = f-rank(Xys), and

3) if A is Gorenstein and M is of finite projective dimension, then

o(M) > 0.
We now recall:

DEFINITION 1.3. Let (A, m) be a Cohen-Macaulay local ring with a
canonical module. The index is define by

index(A) = inf {t > 1: 6(4/m*) > 0}.

REMARK 1.4. It was shown in [4] that index(A) < oo if and only if A
is isolated non-Gorenstein. For such rings, we note that if m* C (x) for
some system of parameters x = z1,...,z4, then §(4/m?) > §(4/(x)) >
0 by 1) and 3) above. Hence index(A4) < ¢4(A).

We describe the index in terms of the columns of the presenting ma-
trix of maximal Cohen-Macaulay modules to relate to col(A) for Goren-
stein local rings A.

PROPOSITION 1.5. Let (A, m) be a Cohen-Macaulay local ring with
a canonical module. Then '

index(A) = CO]CM(A).
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Proof. We claim that i) index(A) = oo if and only if coloa(A) = oo,
and ii) if one of them is finite, then they are the same. To prove these
claims, it is enough, by the definitions of colgas(-) and index(-), to show
that for any positive integer ¢, §(A/m¢) = 0 if and only if there is a
maximal Cohen-Macaulay module X without free summands such that
every entry of some column of the presenting matrix of X is contained
~in m.

Suppose that §(A/m®) = 0. Then there exists a maximal Cohen-
Macaulay module X without free summands such thate : X — A/m® —
0 is an epimorphism. Let z1,. .., 2, be minimal generators of X. Since
€ is onto, we may assume that

(1) e(z) =1
(2) e(z;) =0fori=2,...,mg by replacing z; by =, = z; — a; - z; if
necessary, where €(z;) = @;.
Let
Go: oo Am 2y gmo 2o x g

be a minimal resolution of X, where 9 = [wﬁ]mlxmo and ¢(e;) = z;,
where {e;} is a basis of A™°. Then for (1,0,...,0) € A™,
0 = ¢O¢((1707’0))
= d((Y11,%125 - - s V1mg))
= Y -z1+ P2 T2+ + Yimg  Tmg,

and so
0 = e(n-z1+v2-z2+ - +Vimo - Tmy)
= 1-1  in A/mE ie., P13 € mE.
Similarly, we can also show that 1¢;; € m® for ¢ = 2,...,m;. In other

words, every entry of the first column of 1 belongs to m€.

To prove the converse, suppose that there is a maximal Cohen-Macau-
lay module X without free summands such that every entry of some
column, say the first column, of the presenting matrix of M is contained
in m®. Now, consider the following diagram with n and A described
below:

o Am L 4o B0 X .
™\ /h
A/me

Letn : A 2, 4 -1, A/m¢ where p is the projection onto the first
summand of A™ and m is the canonical quotient map. Then clearly
n is an epimorphism. Note that n(Im ;) = 0 because every entry of
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the first column of ¢; belongs to m®. Thus kerpp = Im¢p; C kern.
By the universal mapping property, there exists an epimorphism h :
X — A/m° Thus 6(4/m°) = 0 by the definition of §-invariant. This
completes the proof. O

In [11], it is shown that col(A) = colgas(A) if A is a Gorenstein local
ring, using the following fact:

FACT 1.6. Let (A,m) be a Gorenstein local ring and X a maxi-
mal Cohen-Macaulay A-module without free summands. Then for any
integer ¢ > 0, X is an ¢-th syzygy.

Thus we have the following corollary:

COROLLARY 1.7. Let (A, m) be a Gorenstein local ring. Then

index(A) = col(A).

Proof. Tt is clear since index(A) = coleps(A) = col(A4) by Proposition
1.5 and Theorem 3.6 in [11]. O

Using Fact 1.6 and Corollary 1.7, we may extend [9, Proposition 2.6]
as follows:

COROLLARY 1.8. Let ¢ : (A,m) — (B,n) be a local homomorphism
of Gorenstein local rings. If ¢ is of finite flat dimension, then col(4) <
col(B). In particular, index(A) < index(B) ([13, Theorem 3.7)).

Proof. Let ¢ be the flat dimension of ¢, i.e., Tor,f‘(M, B) = 0 for
any A-module M and 7 > ¢q. By the theorem above, there is a maxi-
mal Cohen-Macaulay A-module M without free summands such that its
minimal presenting matrix has a column consisting entirely of elements

in meolA)—1 et Am 2, A™ — M — 0 be a minimal presentation of
M. Since A is Gorenstein and M is a maximal Cohen-Macaulay module
without free summands, we may assume that M is a (1 + ¢ + dim B)-
th syzygy of some finitely generated A-module N by Fact 1.6. Write
t = ¢+ dim B. From any minimal resolution (F,, As) of N, we can get
the following minimal resolution of N:

G.:--~—>A"1i> Ao Amti,Amtq_)...i,Amo_,()_

N /!
M
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Applying (—) ®4 B to G,, we get the following minimal resolution of
Coker Ag4+1 ®4 1:

oo Bm 28 pro__ pme M®L pmyy _ Aen1®l pm, o
Since ¢ ® 1 is the (2 + dim B)-th map which has a column consist-
ing of elements in n®(~1 we know col(4) < col(B). In particular,
index(A) < index(B) since index(—) = col(—). O

REMARK 1.9. When A is Gorenstein (with an infinite residue field),
the conjecture in [9] asserts that col(A) = drs(A). By Remark 1.2 and
Corollary 1.7, the conjecture in [9] is equivalent to Ding’s Conjecture
which asserts that index(A) = ££(A) for Gorenstein local rings A (with
an infinite residue field).

We close this section with a discussion concerning the §-invariant of
Matlis dual of a module of finite length. We denote the Matlis dual of M
by MV, ie., MV = Homu (M, E(k)), and denote a d-th syzygy module
of N by Q4(N).

ProposITION 1.10. Let (A,m, k) be a complete Gorenstein local
ring of dimension d, and M a finitely generated A-module of finite
length. If §(M) # 0, then Q4(MV) has a free summand. In particu-
lar, 5(Qq(MV)) # 0.

Proof. Let (F,,@s) be a minimal resolution of MV:
Fyiooo— At 285 gna Pd gra—y o, 470 5 MY 0.

We notice that Exty (M"Y, A) = 0ifi # d, and Ext4 (MY, A) = HO (M V)Y
>~ MVV = M by the local duality since A is a complete Gorenstein local
ring. Thus M = ker(y},,)/Im(p}), where ¢ = Hom4(ps, A). Since a
truncated complex of Homy(Fe, 4), 0 — ker(p;, ) — A™ — AT+ —
Amd+2 — ... is exact, ker(¢}, ;) is a maximal Cohen-Macaulay module.
By the assumption 6(M) # 0, ker(p}, ) should have a free summand.
This fact implies that the number of minimal generators of Im(y}) is
less than ng, so we assume that o3 ; has a row of zeros, ie., p4;1,
which is a transpose matrix of ¢}, ,, has a column of zeros. Hence
Q4(MV) =Im(pg) has a free summand. O

In [15], Yoshino has studied the Auslander’s higher delta invariants,
i.e., 6(Q(M)), and he has shown that there is an integer ¢y such that
§(2p(A/mb)) = 0 for any t > to and for any n > 0. The following
corollary shows that the above fact does not work on the Matlis dual of
A/mt,
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CoROLLARY 1.11. Let (A, m, k) be a complete Gorenstein local ring
of dimension d. Ift > index(A), then Qq4((A/m*)V) has a free summand.
In particular, §(Qq((A/mt)V)) # 0.

Proof. Tt is clear by Proposition 1.10 since §(A/m?) # 0. O

It is shown in [15] that if the depth of the associated graded ring
gr(A) is d— 1, then §(Q"(A/m!)) = 0 for any positive integers ¢ and n,
in particular, Q4(A/m!) has no free summand. Therefore, if we replace
M in Proposition 1.10 by (A/m?)V, then we have the following corollary:

COROLLARY 1.12. Let (A, m, k) be a complete Gorenstein local ring
of dimension d. Suppose that the depth of the associated graded ring
gr,(A) isd — 1. Then 6((A/m*)V) =0 forall t > 1.

Proof. If 6((A/m*)V) # 0 for some ¢, then Q4(A4/m!) would have
a free summand, which contradicts the fact in the above note. Hence
§((A/mt)V) =0 for all £ > 1. O

2. Index of a Cohen-Macaulay local ring

In this section we prove the following theorem which is the main
result of this paper.

THEOREM 2.1. Let (A, m) be a non regular Cohen-Macaulay local
ring of dimension d. Suppose there is a system of parameters x =
Z1,...,Tq such that the following two conditions (*) are satisfied: for
some positive integer ’

i) m™! C (x), but m" Z (x), and

i) mH NI, =m'l fork =1,...,d, where Iy = (x1,...,%).

Then colcy(A) > r + 1. In particular, colpr(A) > €L(A).

COROLLARY 2.2. Let (A,m) be a Gorenstein local ring satisfying
the condition (x) in Theorem 2.1. Then Ding’s Conjecture holds, i.e.
index(A) = ££(A).

Proof. The conclusion follows froni Remark 1.4, Theorem 1.7, and
Theorem 2.1. O

REMARK 2.3. i) We remark that the condition () is satisfied if
the associated graded ring of A, gr,,(A), is Cohen-Macaulay and A/m
is infinite. Indeed, since A/m is an infinite field and gr,,(A) is Cohen-
Macaulay, we can choose a maximal A-sequence X = 1,...,Zq € m—m?>
such that the initial form, X = 77,...,Zg, of x is a gr,(A)-sequence. If



On column invariant and index of Cohen-Macaulay local rings 879

A is not regular, then m™*! C (x), but m" Z (x) for some positive in-
teger . It is known ([12, Corollary 1.4], or [14, Corollary 2.7]) that
z1,...,2; € m/m? is a grp,(A)-sequence if and only if (z1,...,2:) N
m‘t! = (zq,...,z¢)m® for all i (from this fact, we expect that the condi-
tion (%) in Theorem 2.1 is weaker than requiring the associated graded
ring be Cohen-Macaulay assumed for Gorenstein local rings). Thus

since X = 77,...,Z4 € m/m? is a gr,(A)-sequence, the second condi-
tion m™ NI = m'Ix, where k = 1,...,d, and I} = (z1,..., ), is also

satisflied. We note that ¢¢(A4) is attained for such system of parameters
z1,...,2q4, and LL(A) =r+ 1 ([7)).

ii) We also point out that the Corollary 2.2 holds for isolated non-
Gorenstein local rings as long as they satisfy the condition (%) (see Re-
mark 1.4).

COROLLARY 2.4. ([5, Theorem 2.1|) Let (A, m) be a Gorenstein local
ring. Suppose the associated graded ring gr,,(A) is Cohen-Macaulay.
Then

index(A4) = ¢4(A).

Proof. Since gr,(A) is Cohen-Macaulay, there is some positive in-
teger r, which satisfies the condition (x) (in Theorem 2.1) by Remark
2.3. Using Proposition 1.5 and Theorem 2.1, we have the inequalities
index(A) = colop(A) > r > £L(A); hence index(A) = £4(A). O

Before proving Theorem 2.1, we note that the system of parameters
X = I1,...,Tq satisfying the condition (%) is of degree 1, i.e., z; € m—m?
for each i. Indeed, the condition () assures m™*! = (x)m", i.e., (x) is
a reduction of m. If all x; are in m?, then m"*! = (x)m” C m"*2, which
implies m = 0 by Nakayama lemma. Suppose z1,...,2; € m — m? and
Tjt1,...,24 € m2. Now, let N := (z1,...,z;)m""! be a submodule
of M := (z1,...,z4)m""L. Then it is easy to show that mM + N =
M since zjq1,...,24 € m? and mM = m"*! by assumption. There-
fore, by Nakayama lemma, we have M = N, ie., (z1,...,24)m" ! =
(z1,...,z;)m"1, which implies j = d since z1,...,74 is a system of
parameters of A. Thus all ; are in m — m?2.

Proof of Theorem 2.1. Let’s choose y € m" — (x). Since m"t1 C (x)
by assumption, § € Soc(A/x), where ¥ is the image of y in A/x. Thus
we have a monomorphism y : A/m — A/x, which sends 1 to g, and
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have the following commutative complexes:

Foiror = Anatn 2 gma o oAgm L 40 29 4 0
l al 1l ol vl
(g) (C1L dy do
Ko:--- . 0 _ A — ... A — A - A/x — 0,

where (Fo,p,) is a minimal resolution of A/m, (K,,de) is a Koszul
complex of x, and ¢;’s are liftings of the map y. We note that the entries
of ¢; are in m since x = x1,...,24 is a part of minimal generators of m.

d
Let M(¢s)e be the mapping cone of ¢o such that M(ds); = A(t)

@
A™-1 and the differential ¥; = [ di 0 . For examples, ¥, =
$i-1 —pi-1
T
and Ugp1 = [ ¢ —¢a | . Since all entries of d;, ¢;, ¢; are
T4
Y

in m, (M(de)e, ¥e) is a minimal resolution of A/(x,y).
NOW, let (;Se = [¢€j]nlx(‘z)’ dg = [dfj](?)x(ed ) and Yy = [‘pfj]nzx’ﬂe—l'

-1

CLamM 1. We may assume that ¢f; € m" for £ = 0,...,d and
1=1,...,ny, i.e., every entry of the first column of each ¢y is contained
in m”.

Proof of Claim 1. We first note that since m" ' N I, = m" I} for k =
1,...,d, where Iy = (1, ..., zx) we have the property that if Zle riZ; €
m’t1 1 < k < d, then we can choose 7} € m” such that Zle Ty =
E§=1 Rz

To prove claim 1, we use induction on #.

The case ¢ = 0 is clear since ¢9 = y € m”. Suppose claim 1 is true
for all £ < 9. We need to show that qﬁf‘f em” fori=1,...,ng. Since
Wio+1P¢, = 0, we have

¢ﬁe(:|:xgo) + ¢$%(im€%+1) +-ot ¢€?d—e€o+1(ixd)
-1 ¢ -1 fo—1
+ (=)o + (—e)ds -+t (“Pl?neo_l)%ogo_l,l = 0.

Since ¢fg_1 € m” for i = 1,...,n4,—1 by the induction .hypothesis, we
know that
4 £ £
. 19 Teo + B3 Togrr ot By g1 Ta € m’
Thus there exist (15%*, . ,(15{?*_80 41 € m" such that

¢ ¢ ¢ ¢
(611 = 17) ey + -+ (D04 g1 — $1d—g41) - Td = 0.
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This implies that

£o Lo* V4 g% r !
( 11 — 1%_ 1oty ¢1?d_€0+1 - ¢1?d—€0+1) S kerdl = Imdz,
where d are the differentials of Koszul complex of (zy,,.. ., Zq).
Therefore, we may write
d—{g

qﬁl{‘; = qﬁi‘}-* + Zridfgﬂ forsomer; emand j=1,...,d - ¢y + 1.
i=1

For j > d— 4y + 1, put gbfg* = fg - Zd‘eo ridf]‘?H. Using a change

i=1
of basis, we can replace ¢€3 by q&ﬁ‘;* for j = 1,...,(2}), and thus we

may assume ¢€‘i € m’. Similarly, we may assume that ¢fi’ € m'" for
t=2,...,ny,. This completes the proof of Claim 1.

We are now interested in image ¥y, say €4, i.e., d-th syzygy of
A/(x,y). Since depth A/(x,y) = 0, we know that €4 is a maximal
Cohen-Macaulay module by the Ext characterization of depth and the
long exact sequence of Ext. Thus if €24 has no free summand, colcpr(A)
> r+ 1 by the definition of colgps(-) since the presenting matrix of Qg
is W41 and every entries of the first column of ¥y, is in m” by claim
1.

Suppose that 24 has some free summand and let Q4 = Q) @ A.
Let Qq = (m,...,ns), where 7; is a j-th row of ¥4 and s = 1 + ng_1.
Then it is easy to show that there exists ¢g € Hom4 (€24, A) such that
€0(1iy) = 1 for some ny,, and Q) = (Ms s My 1> Migg1> -+ - » 1s), Where
M =Mk —€0(Me)Mip for k =1,... ig—1,i9+1,...,s. Thus the presenting
matrix of Q) is ¥441’ such that ¥, ;' is obtained after deleting 7p-th
column of ¥4, 1, whose entries are all 0 by row-column operations.

CrLAaM 2. (1) €(m) is not a unit for any € € Hom4(Qq, A) and (2)
m(n}) is not a unit for any m € Hom4 (€2}, A).

Proof of Claim 2. If (1) is true, then (2) is clear because

m(n1) = w(m — €o(m)mio) = m(m) — eo(m)m () € m
for 7 € Hom4(Q), A) C Homy (Q4, A).

To show (1), suppose € (71) = 1 for some € € Hom4(2q, A) if possi-
ble. Then we may assume that the entries of the first column of ¥4, are
all 0 by a change of basis. Thus from the minimal resolution of A/(x, y),
we know that Torj (4/x, A/(x,y)) has A/x as a submodule since every
entry of the first row of ¥4 is in (x) = (x1,...,x4). On the other hand,
from the minimal resolution of A/x, i.e., Koszul complex of x, we also
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have that Tor; (A/x,A/(x,y)) = A/(x,y). This implies that (x,y) C
(x) from the monomorphism A/x — Tor}(A/x, A/(x,y)) = A/(x,y).
This contradicts that y ¢ (x).

We can continue the process of a change of basis deleting free sum-
mands of €24 until we have a (maximal Cohen-Macaulay) submodule
X of Q4 without free summands. Then by claim 2, we know that the
presenting matrix of X has a first column whose entries are still in m".
Hence colgps(A) > r+ 1, and so colgpr(A) > £€(A). This completes the
proof. O

We close this section with J. Sally’s example which shows that the
conjecture in [9] holds even if the condition (x) fails. We recall the defi-
nitions of crs(A) and row(A) : if (A, m) is a Cohen-Macaulay local ring,
we define row(M) := inf {¢: each row of ¢; has an element outside m’
for all ¢ > depth A.} (see Definition 1.1 for crs and drs). The conjec-
ture in [9] asserts that col(A) = crs(A) and row(A) = drs(A) for local
Cohen-Macaulay rings with infinite residue field.

EXAMPLE 2.5. Let R = k[te,tet!,t(e=De=1] for e > 4. R is an
one dimensional Cohen-Macaulay local ring and it is known that the
associated graded ring gr.,(R) of R is not Cohen-Macaulay. It is shown
([10, Theorem 2.6]) that col(R) = 2 = crs(R), and row(R) = #¢{(R) =
drs(R) = e — 1, i.e., the conjecture in [9] holds. However, the condition
(*) fails. To show this, we first claim that if (z)m” = m"*! and m" C (z)
for some system of parameters x of R and a positive integer r, then
m” C (y) for any system of parameters (y) of R whenever (y)m™ = m™ 1.
Indeed, since (z)m" = (y)m", we know, for any ¢ € m", ax = by for
some b € m". Since b € m" C (z) and z is a non zero divisor, we have
a € (y). Therefore, by the facts that (#*)m®~! = m® but m®~! C (¢¢),
and (z)m®~! = me for any system of parameters () (see [10, Proposition
2.4]), we know that the condition (x) fails.
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