DOI QR코드

DOI QR Code

ON COLUMN INVARIANT AND INDEX OF COHEN-MACAULAY LOCAL RINGS

  • Koh, Jee (Department of Mathematics Indiana University) ;
  • Lee, Ki-Suk (Department of Mathematics Sookmyung Women's University)
  • Published : 2006.07.01

Abstract

We show that the Auslander index is the same as the column invariant over Gorenstein local rings. We also show that Ding's conjecture ([13]) holds for an isolated non-Gorenstein ring A satisfying a certain condition which seems to be weaker than the condition that the associated graded ring of A is Cohen-Macaulay.

Keywords

References

  1. M. Auslander and R. O. Buchweitz, The homological theory of maximal Cohen- Macaulay approximations, Mem. Soc. Math. France 38 (1989), 5-37
  2. M. Auslander, Minimal Cohen-Macaulay approximations, preprint
  3. S. Ding, Cohen-Macaulay approximations and multiplicity, J. Algebra 153 (1992), no. 2, 271-288 https://doi.org/10.1016/0021-8693(92)90156-G
  4. S. Ding, A note on the index of Cohen-Macaulay local rings, Comm. Algebra 21 (1993), no. 1, 53-71 https://doi.org/10.1080/00927879208824550
  5. S. Ding, The associated graded ring and the index of a Gorenstein local ring, Proc. Amer. Math. Soc. 120 (1994), no. 4, 1029-1033
  6. M. Hashimoto and A. Shida, Some remarks on index and generalized Loewy length of a Gorenstein local ring, J. Algebra 187 (1997), no. 1, 150-162 https://doi.org/10.1006/jabr.1997.6770
  7. J. Herzog, On the index of a homogeneous Gorenstein ring, Contem. Math. 159 (1994), 95-102 https://doi.org/10.1090/conm/159/01506
  8. J. Koh and K. Lee, Some restrictions on the maps in the minimal resolutions, J. Algebra 202 (1998), 671-689 https://doi.org/10.1006/jabr.1997.7310
  9. J. Koh and K. Lee, New homological invariants of local rings, J. Algebra 235 (2001), 431-452 https://doi.org/10.1006/jabr.2000.8506
  10. K. Lee, Computation of numerical invariants col(-), row(-) for a ring $k[t^e,\;t^{e+1},\;t^{(e-1)e-1}$], J. Korean Math. Soc. 37 (2000), no. 4, 521-530
  11. K. Lee, Column invariants over Cohen-Macaulay local rings, Comm. Algebra 33 (2005), no. 5, 1303-1314 https://doi.org/10.1081/AGB-200060500
  12. J. D. Sally, Super-Regular Sequences, Pacific J. Math. 84 (1979), no. 2, 465-481 https://doi.org/10.2140/pjm.1979.84.465
  13. A. Shida, On indices of local rings along local homomorphisms, Comm. Algebra 23 (1995), no. 12, 4535-4541 https://doi.org/10.1080/00927879508825484
  14. P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya Math. J. 72 (1978), 93-101 https://doi.org/10.1017/S0027763000018225
  15. Y. Yoshino, On the higher delta invariants of a Gorenstein local ring, Proc. Amer. Math. Soc. 124 (1996), no. 9, 2641-2647

Cited by

  1. Numerical Invariants on a Ring F[[X,Y]]/ for a Field F vol.6, pp.4, 2013, https://doi.org/10.13160/ricns.2013.6.4.187
  2. Various Row Invariants on Cohen-Macaulay Rings vol.7, pp.4, 2014, https://doi.org/10.13160/ricns.2014.7.4.278