• 제목/요약/키워드: colon carcinogenesis

검색결과 135건 처리시간 0.025초

Development of TGF-$\beta$ Resistance During Malignant Progression

  • Kim, Yong-Seok;Yi, Young-Suk;Choi, Shin-Geon;Kim, Seong-Jin
    • Archives of Pharmacal Research
    • /
    • 제22권1호
    • /
    • pp.1-8
    • /
    • 1999
  • Transforming growth factor-$\beta$ (TGF-$\beta$) is the prototypical multifunctional cytokine, participating in the regulation of vital cellular activities such as proliferation and differentiations as well as a number of basic physiological functions. The effects of TGF-$\beta$ are critically dependent on the expression and distribution of a family of TGF-$\beta$ receptors, the TGF-$\beta$ types I, II, and III. It is now known that a wide variety of human pathology can be caused by aberrant expression and function of these receptors. the coding sequence of the type II receptor (RII) appears to render it uniquely susceptible to DNA replication errors in the course of normal cell division. By virtue of its key role in the regulation of cell proliferation, TGF-$\beta$ RII should be considered as a tumor suppressor gene. High levels of mutation in the TGF-$\beta$ RII gene have been observed in a wide range of primarily epithelial malignancies, including colon and gastric cancer. It appears likely that mutation of the TGF-$\beta$ RII gene may be a very critical step in the pathway of carcinogenesis.

  • PDF

PPARγ Physiology and Pathology in Gastrointestinal Epithelial Cells

  • Thompson, E. Aubrey
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.167-176
    • /
    • 2007
  • Peroxisome proliferator-activated receptor-gamma ($PPAR{\gamma}$) is expressed at very high levels in the gastrointestinal epithelium. Many of the functions of $PPAR{\gamma}$ in gastrointestinal epithelial cells have been elucidated in recent years, and a pattern is emerging which suggests that this receptor plays an important role in gastrointestinal physiology. There is also strong evidence that $PPAR{\gamma}$ is a colon cancer suppressor in pre-clinical rodent models of sporadic colon cancer, and there is considerable interest in exploitation of $PPAR{\gamma}$ agonists as prophylactic or chemopreventive agents in colon cancer. Studies in mice and in human colon cancer cell lines suggest several mechanisms that might account for the tumor suppressive effects of $PPAR{\gamma}$ agonists, although it is not in all cases clear whether these effects are altogether mediated by $PPAR{\gamma}$. Conversely, several reports suggest that $PPAR{\gamma}$ agonists may promote colon cancer under certain circumstances. This possibility warrants considerable attention since several million individuals with type II diabetes are currently taking $PPAR{\gamma}$ agonists. This review will focus on recent data related to four critical questions: what is the physiological function of $PPAR{\gamma}$ in gastrointestinal epithelial cells; how does $PPAR{\gamma}$ suppress colon carcinogenesis; is $PPAR{\gamma}$ a tumor promoter; and what is the future of $PPAR{\gamma}$ in colon cancer prevention?

SUPPRESSION BY CHLOROPHYLL, BUT PROMOTION BY CHLOROPHYLLIN, OF COLON CARCINOGENESIS IN THE FISHER 344 RAT

  • Blum, Carmen A.;Xu, Meirong;Orner, Gayle A.;Diaz, G.Dario;Li, Qingjie;Bailey, George S.;Dashwood, Roderick H.
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.48-49
    • /
    • 2001
  • The carcinogens 2-amino-3-methylimidazo[4, 5-f]quinoline (IQ) and 1, 2-dimethylhydrazine (DMH) induce colon tumors in the Fisher 344 rat that contain mutations in Ctnnbl, the gene for b-catenin, but the pattern of mutation differs from that found in human colon cancers. In both species, mutations affect the glycogen synthase kinase 3$\beta$ (GSK-3$\beta$) consensus region of $\beta$-catenin, but whereas they directly substitute critical Ser/Thr phosphorylation sites in human colon cancers, the majority of mutations cluster around Ser$_{33}$ in the rat tumors.(omitted)d)

  • PDF

SUPPRESSION BY CHLOROPHYLL, BUT PROMOTION BY CHLOROPHYLLIN, OF COLON CARCINOGENESIS IN THE FISHER 344 RAT

  • Blum, Carmen A.;Xu, Meirong;Orner, Gayle A.;Diaz, G.Daria;Li, Qingjie;Bailey, George S.;Dashwood, Roderick H.
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Effects of Edible Phytochemicals and Their Synthetic Derivatives on Carcinogenesis and Mutagenesis
    • /
    • pp.5-6
    • /
    • 2001
  • The carcinogens 2-arnioo-3-methylimidazo[4,5-f]quinoline (IQ) and 1,2-dimethylhydrazine (DMH) induce colon tumors in the Fisher 344 rat that contain mutations in Ctnnb1, the gene for b-catenin, but the pattern of mutation differs from that found in human colon cancers. in both species, mutations affect the glycogen synthase kinase 3$\beta$ (GSK-3$\beta$) consensus region of $\beta$-catenin, but whereas they directly substitute critical Ser/Thr phosphorylation sites in human colon cancers, the majority of mutations cluster around Ser$^{33}$ in the rat tumors.(omitted)

  • PDF

Anticarcinogenic and Antigenotoxic Effects of Bacillus polyfermenticus

  • Park, Eun-Ju;Kim, Kee-Tae;Kim, Cheon-Jei;Kim, Chang-Han;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.852-858
    • /
    • 2004
  • The morbidity and mortality of colon cancer are increasing, because of the westernization of food habit. Probiotics such as lactic acid bacteria (LAB) have been known to play an important role in retarding colon carcinogenesis by possibly influencing metabolic, immunologic, and protective functions in the colon. In this study, we evaluated the effect of B. polyfermenticus SCD on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induced DNA damage in CHO-K, cells and human lymphocytes, and on proliferation of human colon cancer cell. Using the Comet assay to detect DNA damage, we found that B. polyfermenticus SCD protected cells from the DNA damage induced by MNNG in $CHO-K_1$ cells and in human lymphocytes. B. polyfermenticus SCD was also found to inhibit the growth of colon cancer cells in a dose-dependent manner, detected by the MTT assay. These results indicate that B. polyfermenticus SCD has the potential to inhibit not only DNA damage induced by a carcinogen, but also the proliferation of colon cancer cells.

인체 SIP 단백질에 특이적인 단일클론 항체의 특성 (Characterization of a Monoclonal Antibody Specific to Human Siah-1 Interacting Protein)

  • 윤선영;주종혁;김주헌;강호범;김진숙;이영희;권두한;김창남;최인성;김재화
    • IMMUNE NETWORK
    • /
    • 제4권1호
    • /
    • pp.23-30
    • /
    • 2004
  • Background: A human orthologue of mouse S100A6-binding protein (CacyBP), Siah-1-interacting protein (SIP) had been shown to be a component of novel ubiquitinylation pathway regulating $\beta$-catenin degradation. The role of the protein seems to be important in cell proliferation and cancer evolution but the expression pattern of SIP in actively dividing cancer tissues has not been known. For the elucidation of the role of SIP protein in carcinogenesis, it is essential to produce monoclonal antibodies specific to the protein. Methods: cDNA sequence coding for ORF region of human SIP gene was amplified and cloned into an expression vector to produce His-tag fusion protein. Recombinant SIP protein and monoclonal antibody to the protein were produced. The N-terminal specificity of anti-SIP monoclonal antibody was conformed by immunoblot analysis and enzyme linked immunosorbent assay (ELISA). To study the relation between SIP and colon carcinogenesis, the presence of SIP protein in colon carcinoma tissues was visualized by immunostaining using the monoclonal antibody produced in this study. Results: His-tag-SIP (NSIP) recombinant protein was produced and purified. A monoclonal antibody (Korea patent pending; #2003-45296) to the protein was produced and employed to analyze the expression pattern of SIP in colon carcinoma tissues. Conclusion: The data suggested that anti-SIP monoclonal antibody produced here was valuable for the diagnosis of colon carcinoma and elucidation of the mechanism of colon carcinogenesis.

Canola Oil Influence on Azoxymethane-induced Colon Carcinogenesis, Hypertriglyceridemia and Hyperglycemia in Kunming Mice

  • He, Xiao-Qiong;Cichello, Simon Angelo;Duan, Jia-Li;Zhou, Jin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2477-2483
    • /
    • 2014
  • Azoxymethane (AOM) is a potent genotoxic carcinogen which specifically induces colon cancer. Hyperlipidemia and diabetes have several influences on colon cancer development, with genetic and environmental exposure aspects. Here, we investigated plasma lipid and glucose concentrations in Kunming mice randomized into four groups; control (no AOM or oil exposure), AOM control, AOM + pork oil, and AOM + canola oil. Aberrant crypt foci (ACF), plasma cholesterol, plasma triglyceride, plasma glucose and organ weight were examined 32 weeks after AOM injection. Results revealed that AOM exposure significantly increased ACF number, plasma triglyceride and glucose level. Further, male mice displayed a much higher plasma triglyceride level than female mice in the AOM control group. Dietary fat significantly inhibited AOM-induced hypertriglyceridemia, and canola oil had stronger inhibitory effect than pork oil. AOM-induced hyperglycemia had no sex-difference and was not significantly modified by dietary fat. However, AOM itself not change plasma cholesterol level. AOM significantly increased liver and spleen weight in male mice, but decreased kidney weight in female mice. On the other hand, mice testis weight decreased when fed canola oil. AOM could induce colorectal carcinogenesis, hypertriglyceridemia and hyperglycemia in Kunming mice at the same time, with subsequent studies required to investigate their genome association.

Associations between Single Nucleotide Polymorphisms of COX-2 and MMP-2 Genes and Colorectal Cancer Susceptibility in the Saudi Population

  • Shalaby, Manal Ali;Nounou, Howaida Attia;Alanazi, Mohammad Saud;Alharby, Othman;Azzam, Nahla;Saeed, Hesham Mahmoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.4989-4994
    • /
    • 2014
  • Background: It has been reported that COX-2 expression is associated with MMP-2 expression in thyroid and breast cancers, suggesting that MMPs are linked to COX-2-mediated carcinogenesis. Several polymorphisms within the MMP2 promoter region have been reported in cases with oncogenesis and tumor progression, especially in colorectal carcinogenesis. Materials and Methods: This research evaluated risk of association of the SNPs, including genes for COX-2 (AIG transition at +202) and MMP-2 (Crr transition at-1306), with colorectal cancer in 125 patients and 125 healthy controls. Results and Conclusions: Our data confirmed that MMP2 C-1306 T mutations were significantly more common in colon cancer patients than in our control Saudi population; p=O.0121. On the other hand in our study, there was no significant association between genotype distribution ofthe COX2 polymorphism and colorectal cancer; p=0.847. An elevated frequency ofthe mutated genotype in the control group as compared to the patients subjects indeed suggested that this polymorphism could decrease risk in the Saudi population. Our study confirmed that the polymorphisms that could affect the expressions of MMP-2 and COX-2 the colon cancer patients were significantly higher than that in the COX-2 negative group. The frequency of individuals with MMP2 polymorphisms in colon cancer patients was higher than individuals with combination of COX2 and MMP2 polymorphisms. Our study confirmed that individuals who carried the polymorphisms that could affect the expressions ofCOX2 are more susceptible to colon cancer. MMP2 regulatory polymorphisms could be considered as protective; further studies need to confirm the results with more samples and healthy subjects.

Antiproliferative properties of luteolin against chemically induced colon cancer in mice fed on a high-fat diet and colorectal cancer cells grown in adipocyte-derived medium

  • Park, Jeongeun;Kim, Eunjung
    • Journal of Nutrition and Health
    • /
    • 제55권1호
    • /
    • pp.47-58
    • /
    • 2022
  • Purpose: Obesity and a high-fat diet (HFD) are risk factors for colorectal cancer. We have previously shown that luteolin (LUT) supplementation in HFD-fed mice markedly inhibits tumor development in chemically induced colon carcinogenesis. In this study, we evaluated the anticancer effect of LUT in the inhibition of cell proliferation in HFD-fed obese mice and HT-29 human colorectal adenocarcinoma cells grown in an adipocyte-derived medium. Methods: C57BL/6 mice were fed a normal diet (ND, 11.69% fat out of total calories consumed, n = 10), HFD (40% fat out of total calories consumed, n = 10), HFD with 0.0025% LUT (n = 10), and HFD with 0.005% LUT (n = 10) and were subjected to azoxymethane-dextran sulfate sodium chemical colon carcinogenesis. All mice were fed the experimental diet for 11 weeks. 3T3-L1 preadipocytes and HT-29 cells were treated with various doses of LUT in an adipocyte-conditioned medium (Ad-CM). Results: The weekly body weight changes in the LUT groups were similar to those in the HFD group; however, the survival rates of the LUT group were higher than those of the HFD group. Impaired crypt integrity of the colonic mucosa in the HFD group was observed to be restored in the LUT group. The colonic expression of proliferating cell nuclear antigen and insulin-like growth factor 1 (IGF-1) receptors were suppressed by the LUT supplementation in the HFD-fed mice. The LUT treatment (10, 20, and 40 µM) inhibited the proliferation and migration of HT-29 cells cultured in Ad-CM in a dose-dependent manner, as well as the differentiation of 3T3-L1 preadipocytes. Conclusion: These results suggest that the anticancer effect of LUT is probably due to the inhibition of IGF-1 signaling and adipogenesis-related cell proliferation in colon cancer cells.

Suppression of Prostaglandin E2-Mediated Cell Proliferation and Signal Transduction by Resveratrol in Human Colon Cancer Cells

  • Song, Su-Hyun;Min, Hye-Young;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • 제18권4호
    • /
    • pp.402-410
    • /
    • 2010
  • Although the overproduction of prostaglandin $E_2$ ($PGE_2$) in intestinal epithelial cells has been considered to be highly correlated with the colorectal carcinogenesis, the precise mechanism of action remains poorly elucidated. Accumulating evidence suggests that the PGE receptor (EP)-mediated signal transduction pathway might play an important role in this process. In the present study, we investigated the mechanism of action underlying $PGE_2$-mediated cell proliferation and the effect of resveratrol on the proliferation of human colon cancer cells in terms of the modulating $PGE_2$-mediated signaling pathway. $PGE_2$ stimulated the proliferation of several human colon cancer cells and activated growth-stimulatory signal transduction, including Akt and ERK. $PGE_2$ also increased the phosphorylation of GSK-$3{\beta}$, the translocation of ${\beta}$-catenin into the nucleus, and the expressions of c-myc and cyclin D1. Resveratrol, a cancer chemopreventive phytochemical, however, inhibited $PGE_2$-induced growth stimulation and also suppressed $PGE_2$-mediated signal transduction, as well as ${\beta}$-catenin/T cell factor-mediated transcription in human colon cancer cells. These findings present an additional mechanism through which resveratrol affects the regulation of human colon cancer cell growth.