Anticarcinogenic and Antigenotoxic Effects of Bacillus polyfermenticus

  • Published : 2004.08.01

Abstract

The morbidity and mortality of colon cancer are increasing, because of the westernization of food habit. Probiotics such as lactic acid bacteria (LAB) have been known to play an important role in retarding colon carcinogenesis by possibly influencing metabolic, immunologic, and protective functions in the colon. In this study, we evaluated the effect of B. polyfermenticus SCD on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induced DNA damage in CHO-K, cells and human lymphocytes, and on proliferation of human colon cancer cell. Using the Comet assay to detect DNA damage, we found that B. polyfermenticus SCD protected cells from the DNA damage induced by MNNG in $CHO-K_1$ cells and in human lymphocytes. B. polyfermenticus SCD was also found to inhibit the growth of colon cancer cells in a dose-dependent manner, detected by the MTT assay. These results indicate that B. polyfermenticus SCD has the potential to inhibit not only DNA damage induced by a carcinogen, but also the proliferation of colon cancer cells.

Keywords

References

  1. Mutat. Res. v.331 Antimutagenicity of components of dairy products Abdelali, H.;P. Cassand;V. Soussotte;B. Koch-Bocabeille;J. F. Narbonne https://doi.org/10.1016/0027-5107(95)00059-R
  2. Carcinogenesis v.16 Use of HT-29, a culured human colon cancer cell line, to study the effect of fermented milks on colon cancer cell growth and differentiation Baricault, L.;G. Denariaz;J. J. Houri;C. Bouley;C. Sapin;G. Trugnan https://doi.org/10.1093/carcin/16.2.245
  3. Microbiol. Immunol. v.36 Impact of Bifidobacterium longum on human fecal microflora Benno, Y.;T. Mitsuoka https://doi.org/10.1111/j.1348-0421.1992.tb02071.x
  4. Carcinogenesis v.17 Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? Bingham, S. A.;B. Pignatelli;J. R. Pollock;A. Ellul;C. Malaveille;G. Gross;S. Runswick;J. H. Cummings;I. K. O'Neill https://doi.org/10.1093/carcin/17.3.515
  5. Eur. J. Nutr. v.40 Effect of lactobacilli, bifidobacteria and inulin on the formation of aberrant crypt foci in rats Bolognani, F.;C. J. Rumney;B. L. Pool-Zobel;I. R. Rowland https://doi.org/10.1007/s394-001-8359-7
  6. J. Nutr. v.130 The role of probiotic cultures in the prevention of colon cancer Brady, L. J.;D. D. Gallaher;F. F. Busta https://doi.org/10.1093/jn/130.2.410S
  7. Carcinogenesis v.23 Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis in rats Femia, A. P.;C. Luceri;P. Dolara;A. Giannini;A. Biggeri;M. Salvadori;Y. Clune;K. J. Collins;M. Paglierani;G. Caderni https://doi.org/10.1093/carcin/23.11.1953
  8. Kor. J. Appl. Microbiol. Biotechnol. v.23 Effects of the water extract of Akebia on the growth of Clostridium perfringens and some intestinal microorganism Han, B.-J.;S.-K. Woo;H.-K. Shin
  9. J. Immunol. Methods v.119 Reexamination and further development of a precise and rapid dye method for measuring cell growth/cell kill Hansen, M. B.;S. E. Nielsen;K. Berg https://doi.org/10.1016/0022-1759(89)90397-9
  10. J. Dairy Sci. v.75 Antimutagenicity of milk cultured with lactic acid bacteria against N-methyl-N'-nitor-N-nitrosoguanidine Hosoda, M.;H. Hashimoto;H. Morita;M. Chiba;A. Hosono https://doi.org/10.3168/jds.S0022-0302(92)77839-4
  11. Milchwissenschafi v.45 Binding properties of lactic acid bacteria from kefir milk with mutagenic amino acid pyrolyates Hosono, A.;T. Tanabe;H. Otani
  12. Cancer Epidemiol. Biomarkers Prev. v.7 Colorectal cancer incidence trends by subsite in urban Shanghai, 1972-1994 Ji, B. T.;S. S. Devesa;W. H. Chow;F. Jin;Y. T. Gao
  13. Kor. J. Food Sci. Anim. Resour. v.19 Antigenotoxic effect of lactic acid bacteria in vitro in the primary colon cells of Sprague-Dawley-Rats Ji, S. T.;J. H. Park;O. B. Choi;C. K. Hyun;H. K. Shin
  14. Nutr. Res. Rev. v.7 Anticarcinogenic factors in plant food: A new class of nutrients? Johnson, I. T.;G. Williamson;S. R. R. Musk https://doi.org/10.1079/NRR19940011
  15. J. Kor. Soc. Food Sci. Nutr. v.28 Microbiological identification of medical probiotic bispan strain Jun, K.-D.;K.-H. Lee;W.-S. Kim;H.-D. Paik
  16. J. Microbiol. Biotechnol. v.12 Antitumor activity of Lactobacillus plantarum cytoplasm on teratocarcinoma bearing mice Kim, J. Y.;H. J. Woo;K. H. Kim;E.-R. Kim;H.-K. Jung;H.-N. Juhn;H. J. Lee
  17. J. Am. Diet Assoc. v.101 Prophylactic and therapeutic uses of probiotics: A review Kopp-Hoolihan, L. https://doi.org/10.1016/S0002-8223(01)00060-8
  18. Lett. Appl. Microbiol. v.32 Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus Lee,-K. H.;K.-D. Jun;W.-S. Kim;H.-D. Paik https://doi.org/10.1046/j.1472-765x.2001.00876.x
  19. Int. J. Antimicrob. Agents v.16 The use of probiotics in medical practice Mombelli, B.;M. R. Gismondo https://doi.org/10.1016/S0924-8579(00)00322-8
  20. J. Microbiol. Biotechnol. v.12 Effects of Bacillus polyfermenticus SCD administration on fecal microflora and putrefactive metabolites in healthy adults Park, K.-Y.;H.-Y. Jung;K.-L. Woo;K.-D. Jun;J.-S. Kang;H.-D. Paik
  21. Nutr. Cancer v.20 Antigenotoxic propeties of lactic acid bacteria in vivo in the gastrointestinal tract of rats Pool-Zobel, B. L. ;B. Bertram;M. Knoll;R. Lambertz;C. Neudecker;U. Schillinger;P. Schmezer;W. H. Holzapfel https://doi.org/10.1080/01635589309514295
  22. J. Clin. Gastroenterol. v.37 New scientific paradingms for probiotics and prebiotics Reid, G.;M. E. Sanders;H. R. Gaskins;G. R. Gibson;A. Mercenier;R. Rastall;M. Roberfroid;I. Rowland;C. Cherbut;T. R. Klaenhammer https://doi.org/10.1097/00004836-200308000-00004
  23. Kor. J. Appl. Microbiol. Biotechnol. v.24 Effects of the lactic acid bacteria administration on fecal microflora and putrefactive metabolites in healthy adults Shin, M.-S.;Y.-J. Kim;H.-S. Bae;Y.-J. Baek
  24. Exp. Cell. Res. v.175 A simple technique for quantitation of low levels of DNA damage in individual cells Singh, P. N.;M. T. McCoy;R. R. Tice;E. L. Schneider https://doi.org/10.1016/0014-4827(88)90265-0
  25. Biochim. Biophys. Acta v.77 Studies on succinate-tetrazolium reductase systems. Ⅲ. Points of coupling of four different tetrazolium salts Slater, T. F.;B. Sawyer;U. Straeuli https://doi.org/10.1016/0006-3002(63)90513-4
  26. Mutat. Res. v.428 Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances Surh, Y.-J. https://doi.org/10.1016/S1383-5742(99)00057-5