• Title/Summary/Keyword: collocation methods

Search Result 59, Processing Time 0.034 seconds

Analysis on a Simple Waveguide Using Meshfree Method (무요소법을 이용한 waveguide 내의 필드 분포 해석)

  • Lee, Chany;Woo, Dong-Kyun;Jung, Hyun-Kyo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.190-192
    • /
    • 2008
  • This paper shows the formulation of fast moving least square reproducing kernel method (FMLSRKM) which is a kind of meshfree methods. FMLSRKM has some advantages compared to conventional numerical techniques such as finite element method. For simple analysis on a rectangular waveguide, point collocation scheme is introduced and applied.

  • PDF

PSEUDO-SPECTRAL LEAST-SQUARES METHOD FOR ELLIPTIC INTERFACE PROBLEMS

  • Shin, Byeong-Chun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1291-1310
    • /
    • 2013
  • This paper develops least-squares pseudo-spectral collocation methods for elliptic boundary value problems having interface conditions given by discontinuous coefficients and singular source term. From the discontinuities of coefficients and singular source term, we derive the interface conditions and then we impose such interface conditions to solution spaces. We define two types of discrete least-squares functionals summing discontinuous spectral norms of the residual equations over two sub-domains. In this paper, we show that the homogeneous least-squares functionals are equivalent to appropriate product norms and the proposed methods have the spectral convergence. Finally, we present some numerical results to provide evidences for analysis and spectral convergence of the proposed methods.

NUMERICAL STUDY ON TWO-DIMENSIONAL INCOMPRESSIBLE VISCOUS FLOW BASED ON GRIDLESS METHOD (2차원 비압축성 점성유동에 관한 무격자법 기반의 수치해석)

  • Jeong, S.M.;Park, J.C.;Heo, J.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.93-100
    • /
    • 2009
  • The gridless (or meshfree) methods, such as MPS, SPH, FPM an so forth, are feasible and robust for the problems with moving boundary and/or complicated boundary shapes, because these methods do not need to generate a grid system. In this study, a gridless solver, which is based on the combination of moving least square interpolations on a cloud of points with point collocation for evaluating the derivatives of governing equations, is presented for two-dimensional unsteady incompressible Navier-Stokes problem in the low Reynolds number. A MAC-type algorithm was adopted and the Poission equation for the pressure was solved successively in the moving least square sense. Some typical problems were solved by the presented solver for the validation and the results obtained were compared with analytic solutions and the numerical results by conventional CFD methods, such as a FVM.

Generalized Computational Nodes for Pseudospectral Methods

  • Kim, Chang-Joo;Park, Soo Hyung;Jung, Sung-Nam;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.183-189
    • /
    • 2014
  • Pseudo-spectral method typically converges at an exponential rate. However, it requires a special set of fixed collocation points (CPs) to get highly accurate formulas for partial integration and differentiation. In this study, computational nodes for defining the discrete variables of states and controls are built independently of the CPs. The state and control variables at each CP, which are required to transcribe an NOCP into the corresponding NLP, are interpolated, using those variables allocated at each node. Additionally, Lagrange interpolation and spline interpolation are investigated, to provide a guideline for selecting a favorable interpolation method. The proposed techniques are applied to the solution of an NOCP using equally spaced nodes, and the computed results are compared to those using the standard PS approach, to validate the usefulness of the proposed methods.

LEAST-SQUARES SPECTRAL COLLOCATION PARALLEL METHODS FOR PARABOLIC PROBLEMS

  • SEO, JEONG-KWEON;SHIN, BYEONG-CHUN
    • Honam Mathematical Journal
    • /
    • v.37 no.3
    • /
    • pp.299-315
    • /
    • 2015
  • In this paper, we study the first-order system least-squares (FOSLS) spectral method for parabolic partial differential equations. There were lots of least-squares approaches to solve elliptic partial differential equations using finite element approximation. Also, some approaches using spectral methods have been studied in recent. In order to solve the parabolic partial differential equations in parallel, we consider a parallel numerical method based on a hybrid method of the frequency-domain method and first-order system least-squares method. First, we transform the parabolic problem in the space-time domain to the elliptic problems in the space-frequency domain. Second, we solve each elliptic problem in parallel for some frequencies using the first-order system least-squares method. And then we take the discrete inverse Fourier transforms in order to obtain the approximate solution in the space-time domain. We will introduce such a hybrid method and then present a numerical experiment.

NUMERICAL STUDY ON TWO-DIMENSIONAL INCOMPRESSIBLE VISCOUS FLOW BASED ON GRIDLESS METHOD (2차원 비압축성 점성유동에 관한 무격자법 기반의 수치해석)

  • Jeong, S.M.;Park, J.C.;Heo, J.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.239-244
    • /
    • 2009
  • The gridless (or meshfree) methods, such as MPS, SPH, FPM an so forth, are feasible and robust for the problems with moving boundary and/or complicated boundary shapes, because these methods do not need to generate a grid system. In this study, a gridless solver, which is based on the combination of moving least square interpolations on a cloud of points with point collocation for evaluating the derivatives of governing equations, is presented for two-dimensional unsteady incompressible Navier-Stokes problem in the low Reynolds number. A MAC-type algorithm was adopted and the Poission equation for the pressure was solved by successively in the moving least square sense. Some weighing functions were tested in order to investigate the up-winding effect for the convection term. Some typical problems were solved by the presented solver for the validation and the results obtained were compared with analytic solutions and the numerical results by conventional CFD methods, such as FVM.

  • PDF

Free Vibration Analysis of Arbitrarily Shaped Plates with Free Edges using Non-dimensional Dynamic Influence Functions (무차원 동영향 함수를 이용한 자유단 경계를 가진 임의 형상 평판의 자유진동해석)

  • Gang, S.W.;Kim, I.S.;Lee, J.M.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.740-745
    • /
    • 2003
  • The so-called boundary node method (or NDIF method) that was developed by the authors has been extended for free vibration analysis of arbitrarily shaped plates with free edges. Since the proposed method is based on the collocation method, no integration procedure is needed on boundary edges of the plates and only a small amount of numerical calculation is required. A special coordinate transformation has been devised to consider the complicated free boundary conditions at boundary nodes. By the use of the special coordinate transformation, the radius of curvature involved in the free boundary conditions can be successfully dealt with. Finally, verification examples show that natural frequencies obtained by the present method agree well with those given by exact method and other analytical methods.

  • PDF

New algorithm for simulating heat transfer in a complex CPFS (Cable Penetration Fire Stop)

  • Yun, Jong-Pil;Kwon, Seong-Pil;Cho, Jae-Kyu;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1798-1803
    • /
    • 2003
  • In this work the dynamic heat transfer occurring in a cable penetration fire stop system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealants. The dynamic heat transfer can be described by a partial differential equation (PDE) and its initial and boundary conditions. For the shake of simplicity PDE is divided into two parts; one corresponding to the heat transfer in the axial direction and the other corresponding to the heat transfer on the vertical layers. Two numerical methods, SOR (Sequential Over-Relaxation) and FEM (Finite Element Method), are implemented to solve these equations respectively. The axial line is discretized, and SOR is applied. Similarly, all the layers are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The heat fluxes on the layers are calculated by FEM. It is shown that the penetration cable influences the temperature distribution of the fire stop system very significantly. The simulation results are shown in the three-dimensional graphics for the understanding of the transient temperature distribution in the fire stop system.

  • PDF

Numerical Study on the Fluid Flow and Heat Transfer Past a Cylinder with a Periodic Array of Circular Fins (원형 핀이 부착된 실린더 주위의 유동 및 열전달에 관한 수치적 연구)

  • Yoon, Hyun-Sik;Chun, Ho-Hwan;Lee, Dong-Hyuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.285-293
    • /
    • 2006
  • Three-dimensional and time-dependent solution for the fluid flow and heat transfer past a circular cylinder with fins is obtained using accurate and efficient spectral methods. A Fourier expansion with a corresponding uniform grid is used along the circumferential direction. A spectral multi-domain method with a corresponding Chebyshev collocation is used along r-z plane to handle fins attached to the surface of a circular cylinder. At the Reynolds number of 300 based on a cylinder diameter, results with fins are compared with those without fins in order to see the effects of the presence of fins on three-dimensional and unsteady fluid flow and heat transfer past a bluff body. The detail structures of fluid flow and temperature field are obtained as a function of time to investigate how the presence of fins changes heat transfer mechanism related to the vortical structure in the wake region.

A Corpus-based Lexical Analysis of the Speech Texts: A Collocational Approach

  • Kim, Nahk-Bohk
    • English Language & Literature Teaching
    • /
    • v.15 no.3
    • /
    • pp.151-170
    • /
    • 2009
  • Recently speech texts have been increasingly used for English education because of their various advantages as language teaching and learning materials. The purpose of this paper is to analyze speech texts in a corpus-based lexical approach, and suggest some productive methods which utilize English speaking or writing as the main resource for the course, along with introducing the actual classroom adaptations. First, this study shows that a speech corpus has some unique features such as different selections of pronouns, nouns, and lexical chunks in comparison to a general corpus. Next, from a collocational perspective, the study demonstrates that the speech corpus consists of a wide variety of collocations and lexical chunks which a number of linguists describe (Lewis, 1997; McCarthy, 1990; Willis, 1990). In other words, the speech corpus suggests that speech texts not only have considerable lexical potential that could be exploited to facilitate chunk-learning, but also that learners are not very likely to unlock this potential autonomously. Based on this result, teachers can develop a learners' corpus and use it by chunking the speech text. This new approach of adapting speech samples as important materials for college students' speaking or writing ability should be implemented as shown in samplers. Finally, to foster learner's productive skills more communicatively, a few practical suggestions are made such as chunking and windowing chunks of speech and presentation, and the pedagogical implications are discussed.

  • PDF