• 제목/요약/키워드: collision-free trajectory

검색결과 44건 처리시간 0.02초

이동 로봇을 위한 실시간 충돌 회피 궤적 계획과 제어 (A Real-Time Collision-Free Trajectory Planning and Control for a Car-Like Mobile Robot)

  • 이수영;이석한;홍예선
    • 제어로봇시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.105-114
    • /
    • 1999
  • By using the conceptual impedance and the elasticity of a serial chain of spring-damper system, a real-time collision-free trajectory generation algorithm is proposed. The reference points on a trajectory connected by the spring-damper system have a mechanism for self-Position adjustment to avoid a collision by the impedance, and the local adjustment of each reference point is propagated through the elasticity to a real robot at the end of the spring-damper system. As a result, the overall trajectory consisting of the reference points becomes free of collision with environmental obstacles and efficient having the shortest distance as possible. In this process, the reference points connected by the spring-damper system take role of virtual robot as global guidance for a real robot, and a cooperative optimization is carried out by the system of virtual robots. A control algorithm is proposed to implement the impedance for a car-like mobile robot.

  • PDF

유연마니퓨레이터의 궤도최적화 (Trajectory Optimization of Flexible Manipulators)

  • 이승재;최연선;야마카와히로시
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.979-983
    • /
    • 2001
  • We develop a new method of simultaneous optimization of trajectory and shape of redundant flexible manipulators for collision-free utilizing the B-spline function and a mathematical programming method We adopt an approximate flexible manipulator model which consists of rigid bar elements and spring elements. We use B-spline function for determining the approximate trajectory and the expressions of the outline of obstacles. The used total performance index consists of 2 performance indices. The first is the driving energy, and the second is the trajectory deviation which is caused by the approximate modeling for the flexible manipulator. We design optimal collision-free trajectory of flexible manipulators by searching optimum positions of the control points for B-spline approximation which minimize the performance index subject to constraint condition for collision-free. Some examinations through numerical examples show the effectiveness of the method

  • PDF

COLLISION-FREE TRAJECTRY PLANNING FOR DUAL ROBOT ARMS USING ITERATIVE LEARNING CONCEPT

  • Suh, Il-Hong;Chong, Nak-Young;Choi, Donghun;Shin, Kang-G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.627-634
    • /
    • 1989
  • A collision-free trajectory planning algorithm using the iterative learning concept is proposed for dual robot arms in a 3-D workspace to accurately follow their specified paths with constant velocities. Specifically, a collision-free trajectory minimizing the trajectory error is obtained first by employing the linear programming technique. Then the total operating time is iteratively adjusted based on the maximum trajectory error of the previous iteration so that the collision-free trajectory has no deviation from the specified path and also the operating time is near-minimal.

  • PDF

A method of minimum-time trajectory planning ensuring collision-free motion for two robot arms

  • Lee, Jihong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.990-995
    • /
    • 1990
  • A minimum-time trajectory planning for two robot arms with designated paths and coordination is proposed. The problem considered in this paper is a subproblem of hierarchically decomposed trajectory planning approach for multiple robots : i) path planning, ii) coordination planning, iii) velocity planning. In coordination planning stage, coordination space, a specific form of configuration space, is constructed to determine collision region and collision-free region, and a collision-free coordination curve (CFCC) passing collision-free region is selected. In velocity planning stage, normal dynamic equations of the robots, described by joint angles, velocities and accelerations, are converted into simpler forms which are described by traveling distance along collision-free coordination curve. By utilizing maximum allowable torques and joint velocity limits, admissible range of velocity and acceleration along CFCC is derived, and a minimum-time velocity planning is calculated in phase plane. Also the planning algorithm itself is converted to simple numerical iterative calculation form based on the concept of neural optimization network, which gives a feasible approximate solution to this planning problem. To show the usefulness of proposed method, an example of trajectory planning for 2 SCARA type robots in common workspace is illustrated.

  • PDF

反復 學習槪念을 利용한 두 臺의 로봇의 衝突回避 軌跡計劃 (Collision-Free Trajectory Planning for Dual Robot Arms Using Iterative Learning Concept)

  • 정낙영;서일홍;최동훈
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.69-77
    • /
    • 1991
  • 본 연구에서는 주로 약결합된 경우의 다로봇시스템에 대한 효과적인 운동조정 법을 개발하였다. 약결합된 경우의 다로봇시스템은 아크용접, 분사 도료, 금속면의 디버링, 복잡한 조립작업, 검사등 수많은 작업에 투입될 수 있다.그와 같은 작업들 은 대부분 연적경로제어(continuous path control)방법을 요구하고 있는데 다로봇시스 템인 경우 작업대 주위의 정지 혹은 이동 장애물이나 제로봇상호간의 충격포험성을 해 결할 수 있는 효과적인 장애물회피 능력을 추가적으로 요구하고 있다. 그리고 연적 경로제어 형태의 거의 대부분의 첨단부의 속도를 정속도로 유지해주어야만 한다. 따 라서 모든 로봇들을 지정된 경로의 이탈없이 가능한 최대등속도로 운동시키기 위한 다 로봇시스템의 충격회피운동제어 알고리즘을 개발하게되었다.

A method of collision-free trajectory planning for two robot arms

  • Lee, Jihong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.649-652
    • /
    • 1989
  • In this paper we outline an approach for the collision-free trajectory planning of two robot arms which are modeled as connected line segments. A new approach to determine the collision between two robot arms and the boundary of the collision region in the coordination space is proposed. The coordination curve may then be chosen to avoid the collision region. For minimum time trajectory, time is assigned to this curve by dynamic time scaling under constraints such as maximum torque or maximum angular velocity of each actuator. A comparison of the proposed method and the graphical method of determining the collision region is also included. Finally, as an example, some simulation results for two SCARA type robots are presented.

  • PDF

모바일 로봇의 충돌회피 알고리즘 개발 (A Real-Time Collision-Free Trajectory Planning and Control for a Car-Like Mobile Robot)

  • 노연 후 콩;김기복;조상영
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.99-109
    • /
    • 2015
  • This study proposes a new approach to analyze the impedance and the elasticity of a serial chain of spring-damper system, areal-time collision-free trajectory generation algorithm is proposed. The reference points on a trajectory connected by the spring-damper system have a mechanism for self-position adjustment to solve a collision problem by the impedance, and the local adjustment of each reference point is propagated through the elasticity to a real robot at the end of the spring-damper system. As a result, the overall trajectory consisting of the reference points becomes free of collision with environmental obstacles and efficient having the shortest distance as possible. In this process,, the reference points connected by the spring-damper system take role of virtual robot as global guidance for a real robot, and a cooperative is carried out by the system of robots. A control technology is proposed to implement for mobile robot.

자유항주 모형시험을 활용한 선박 충돌사고 재현에 관한 연구 (A Study on Playback of Ship Collision Accident Using Free Running Model Test)

  • 박한솔;손남선;표춘선
    • 대한조선학회논문집
    • /
    • 제60권6호
    • /
    • pp.450-459
    • /
    • 2023
  • According to Korea Maritime Safety Tribunal, there have been 14,100 maritime accidents from 2017 to 2021. Among those accidents, ship collision accidents have been up to 1,275 cases. But in the accidents relating to small ships like a fishing vessel, analyzing the causes of the accidents would depend on statements of the persons related because there is often no navigational data. But those statements can be incorrect and give rise to disagreements between them so that it causes conflicts with each other during the trial. So a replay system of ship collision accident (RESCA) has been developed in order to reproduce the ship collision accident by using AIS, V-PASS or radar data. But the reproduced trajectory of ship collision accident is needed to be verified because it can be unreasonable physically. So a method to verify the reproduced trajectory and collect the physical data on ship collision accident is newly designed by using free running test. In the RESCA, the accident is reproduced using the navigational data from the trajectory for a ship and measured from free running model test for the other ship at the same time. Through free running test, the behavior of the model ship is transformed from model scale into real scale. In order to check into the accuracy of the new method, free running model tests by using RESCA are carried out on the actual ship collision accidents.

계층적 모델링에 의한 두 팔 로봇의 상호충돌방지 실시간 경로제어 (Hierarchical Model-based Real-Time Collision-Free Trajectory Control for a Cual Arm Rrobot System)

  • 이지홍;원경태
    • 제어로봇시스템학회논문지
    • /
    • 제3권5호
    • /
    • pp.461-468
    • /
    • 1997
  • A real-time collision-free trajectory control method for dual arm robot system is proposed. The proposed method is composed of two stages; one is to calculate the minimum distance between two robot arms and the other is to control the trajectories of the robots to ensure collision-free motions. The calculation of minimum distance between two robots is, also, composed of two steps. To reduce the calculation time, we, first, apply a simple modeling technique to the robots arms and determine the interested part of the robot arms. Next, we apply more precise modeling techniques for the part to calculate the minimum distance. Simulation results show that the whole algorithm runs within 0.05 second using Pentium 100MHz PC.

  • PDF

다이나믹 프로그래밍에 의한 두 대의 로보트를 위한 최소시간 경로계획 (A Near Minimum-Time Trajectory Planning for Two Robots Using Dynamic Programming Technique)

  • 이지홍;오영석
    • 전자공학회논문지B
    • /
    • 제29B권11호
    • /
    • pp.36-45
    • /
    • 1992
  • A numerical trajectory planning method for path-constrained trajectory planning is proposed which ensures collision-free and time-optimal motions for two robotic manipulators with limited actuator torques and velocities. For each robot, physical constraints of the robots such as limited torques or limited rotational velocities of the actuators are converted to the constraints on velocity and acceleration along the path, which is described by a scalar variable denoting the traveled distance from starting point. Collision region is determined on the coordination space according to the kinematic structures and the geometry of the paths of the robots. An Extended Coordination Space is then constructed` an element of the space determines the postures and the velocities of the robots, and all the constraints described before are transformed to some constraints on the behaviour of the coordination-velocity curves in the space. A dynamic programming technique is them provided with on the discretized Extended Coordination Space to derive a collision-free and time-optimal trajectory pair. Numerical example is included.

  • PDF