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ABSTRACT

A minimum-time trajectory planning for two robot
arms with designated paths and coordination is proposed.
The problem considered in this paper is a subproblem of
hierarchically decomposed trajectory planning approach for
multiple robots : i) path planning, ii) coordination planning,
iii) velocity planning. In coordination planning stage, coor-
dination space, a specific form of configuration space, is
constructed to determine collision region and collision-free
region, and a collision-free coordination curve (CFCC)
passing collision-free region is selected. In velocity plan-
ning stage, normal dynamic ecquations of the robots,
described by joint angles, velocities and accelerations, are
converted into simpler forms which are described by travel-
ing distance along collision-free coordination curve. By util-
izing maximum allowable torques and joint velocity limits,
admissible range of velocity and acceleration along CFCC
is derived, and a minimum-time velocity planning is calcu-
lated in phase plane. Also the planning algorithm itself is
converted to simple numerical iterative calculation form
bascd on the concept of neural optimization network, which
gives a feasible approximate solution to this planning prob-
fem. To show the usefujness of proposed method, an exam-
ple of trajectory planning for 2 SCARA type robots in
common workspace is illustrated.

1. INTRODUCTION

When robots are applied to do some tasks, it is found
that planning is as much essential as control. In planning
stage, we should define the overall tasks of each robot
quantitatively, and then plan the trajectory of each robot by
taking the capacities of the robots into consideration.

In many cases, tasks can be done in shorter time or
more efficiently by multiple robots than by single robot.
But when the task nceds two robots in common workspace,
for examples, it is very complex to derive collision-free
motion for two robots, because one robot effectively
becomes unpredictable moving obstacle to another. Due to
such complexities relatively few algorithms have been pro-
posed for the case of multiple robots.

Previous works related to multiple robot system can
be classified into two groups ; i) local modification of tra-
jectories of specific robots after independent planning[1,2,4],
i) simultaneous planning. To ensure global optimality,
simultaneous planning is encouraged, but due to the com-
plexity of the problem. a complete solution for general case
is not reported yet. A simultaneous on-line planning method
in local optimum sense was proposed in the work of Lee
and Bien[3], and a hierarchically decomposed solution
approach was taken by Shin and Bien[S]. Shin and Bien
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proposed 3 level decomposition method ; a) path planning,
b) coordination planning, ¢) velocity planning. Each decom-
posed subproblem is not only an element of a feasible solu-
tion approach for general trajectory planning problem but
also an independent problem according to tasks. Moreover
they deviced a tool called "Coordination Space” to check
collision between robots, and converted planning problem
into simple geometrical problem. We deal with the third
subproblem as independent problem, ie., the case in which
the paths and the coordination of two robots are given.

More specifically, it is proposed in the work of Tank
and Hopfield[6] that the neural optimization nctwork can
solve such complicated linear programming problem instead
of  traditional  analytical methods. Tsutgumi  and
Matsumoto[7] applied this neural optimization network con-
cept in the planning of single robot with obstacles by modi-
fyving the concept into the form applicable to nonlinear pro-
gramming problem.

In this paper, we consider a feasible approach of find-
ing minimum-time velocity planning with given paths and
coordination for two robots under the constraints in joint
torques and joint velocities of each robot. After deriving a
planning method analytically, we also propose an approxi-
mate solution process using neural optimization network.

2. NEURAL OPTIMIZATION NETWORK

There are many algorithmic methods for solving con-
strained minimization problems, and, of course, the necural
optimization network method is one of them. The model of
a ncural network used in this work is a highly intercon-
nected one of analog processors, and is called "Neural
Optimization Network"[6]. This network can solve a lincar
programming problem and its basic operation is described
below.

In the work of Tank and Hopfield, given M scalars
Bj ,Jj=12,-M, and the N dimensional vectors A and
D; . j=12,-M, the following problem is considered:

[ P ] Determine an N dimensional vector V which
minimizes the nonnegative objective function

T=A-V (1)
under the constraints
D; V2> B, j=12....M 2)

where "" denotes the inner product of two vectors.



By introducing an energy function in which objective func-
tion and constraint function are combined, original con-
strained minimization problem on R" which is described by
equation (1) and (2) is converted to an augmented but
unconstrained minimization problem. Nextly a differential
equation of variable V which satisfy equation (3) is
derived.
dE
dt

Then a network which operates under that differential equa-
tion makes that energy smaller and smaller, and finally
gives V which makes that energy to smallest value, ie., a
solution of minimization problem.

<0 e (0,0) 3)

3. COORDINATION SPACE AND COLLISION REGION

To efficiently handle collision between two robots, a
concept called "Coordination Space (CS)" was proposed by
Shin and Bien[5] , and we summarize the essence in the
following.

When the paths of the robots are given, kinematics of
each robots can be described by traveling distances along
the paths for the case in which we can exclude redundancy
of the robots. Hence they defined a 2-dimensional space in
which two axis are the traveling distances along each path.
Note that a point of CS corresponds to some configurations
of two robots. Then a region in CS composed of all the
points of CS which correspond to the configurations of two
robots in collision state, is called "Collision Region (CR)".
Details of determining CR may be found in the work of
Shin and Bien. And a continuous curve connecting point
(0,0) and ending point in CS without passing inside of col-
lision region is called a "Collision-Free Coordination
Curve (CFCC)". Then any velocity planning for the robots
along a CFCC ensures collision-frec motion. The CS and
CR for the paths of Figure 1 is calculated and given in
Figure 2.

4. MINIMUM-TIME VELOCITY PLANNING

A minimum-time velocity planning method with given
coordination planning is described in this section. We sum-
marize problcm as follows :

[ P ] When a task is given such that two robot, whose
kinematics and dynamics are given by (4)-(5), move
from their corresponding initial points to final points
along the designated path of (6) under a coordination
of (7). find a pair of minimum-time velocity profile
of each robot under given constraints of torque and
velocity of actuators of two robots which are described
by (8) and (9).

X =K () )
D (d)§+C(q.4)+e(@)=1 (5
X' =4 ") ()]
52 = TGY Q)
won(d ) =0 < (g 4) ®
anin(@) < @< dpuld) =12, ©)

The coordination which is described by equation (7) deter-
mines a relation between two robots, hence with a coordina-
tion two robots operate under a synchronized manner. The
coordination may be given for some task, for example, in
which two robots carry a long bar grasping each end
respectly, or may artificially be determined under some cri-
terion. For example, the following performance was taken
in [8], in which safety and degree of accomplishment are
summed by weighting:
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Fig.l. A two robot system in common workspace
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(10)

To solve the previously mentioned problem, firstly we
define new variable "s", which is traveling distance along
CC from (0,0) in CS. Then joint variables of the robots
are described as a function of this variable such as

g =h (s) , r=12 i=12,..N' 1

where N' is the total number of joint of robot r. Differen-
tiating with respect to time we get

dhi’
g = § (12)
) ds
. A ak]
g = () + s (13)
! ds2 ds



Also the dynamics for each joint of the robots is converted
o
NT N' NT
or r o .r.r r
“,'r = E-’{j‘]j + Ezcijkqjqk + g
j=1 j=1k=1

N7 letir(.f )2 dh!
r

e Ay
j=1 g ds
NTNTdh] diy
+ X 2CH—
j=1k=1 ds
N dn]
PN

4 ds

p )+ g
S

§

i

j=1

dzhi'
2

5 j=1k=1

NT N7 dh] dhy
+ 2 2Ci,

ds ds

N
+ | 25
=1

() +ef

M5+ QY + gf (14)

Applying allowable torque bounds, the following inequalities
are derived and arranged as

- 2

“ir,min = Ml”‘Y + Qir('y) + gir“<_ "l'r,m‘u‘ (15)
.2 ..

U min O/() +g =M[§

=< u,.r’max - Q‘-’(.\:)2 + g (16)

In general case u ;. = —ul is feasible assumption,

i max
hence (16) becomes

- sign (M [)u]

-2
imax Qir(‘y) + gl'r
-
M
sign (M) e — Q,-V(X')2 +g

Mr

i

an

If we define new variable v = s
simpler form as

LB =v =< UB/

i i

, then (17) is described in

(18)

And (17) should be satisfied for all joints of the robots,
therefore we get

Max LB] < v =< Min UB] (19)
ir ir
and describe it in simple form
LB(s) = v < UB(s) (20)

To be physically mecaningful, the solution of v in (20)
should exist. Hence from (19)

Min UB] = Max LB] (21)
ir ir

and these inequalities mean for each joint
UB{ - LB = 0 (22)

p=12,¢=12,i=12,.NF | j=12,.N?
Then by substituting original form of (17) for (22), we get

q
pr _ gj‘i "2 + ui,imax - gip _ uj"],ma.x - gj >0
q
Mr Ml M7 H
p=12g=12,i=12,. N | ;=12 N1 (23)
The solution of (23) is calculated in such form as
0 < v < ¢y(s) (24)

992

because we exclude reverse motion along CFCC. Also
from the maximum allowable joint velocity of (9), another
set of incqualities are derived by following calculation.
With arbitrary value of v, corresponding joint velocities
arc calculated.

dh{
Gy = — v
0 ds 0

Then scaling factor is calculated to adjust the calculated
joint velocities to maximum allowable limits.

(25)

[ dio |
vy = max | ———— (26)
ir

A

And scale the previously used velocity v, by scaling factor.

Yo
Vmax = (27)
Y
The result may be arranged in inequality form :
0<v =4¢ (s) (28)

From the inequalities of (24) and (28), the allowable velo-
cities along coordination curve are arranged in form of

0 <v = Min( d(s),dy(s) ) = () (29)

An example of ¢(s) is given in Figure 3. And the total
traveling time along CC is

S s 5
dt 1 1
Tf = f dr = ;;d.&‘ = f—.d.&‘ = \J‘—'ds (30)
o 0 s [

where § is total traveling distance along CC from (0,0) to
ending point in CS. From (30) we can know by intuition
that minimum-time vclocity planning should sustain its
maximum value at every instant without violating accelera-

i

[ 1 e L
Q
L.
O
o] -
C
0
6 Vvoo= ‘I)l ( s )
o2
/ |
s /
> \

0 L. ! | !
0 0.0891 0.178 0.267 0.356

’ travelling distonce along CECC

Fig3. An example of phase plane



tion limit. At this point, we describe a minimum-time velo-
city planing algorithm based on the method for single robot
case in [9,10].

s1) From s=0, v=v,, construct a trajectory with
maximum acceleration UB in forward direction
until this curve meets v=¢ or goes past s=S.

s2) From s=S,v=v,, construct a trajectory with
maximum deceleration LB in backward direction
until this curve meets v=d or goes past s=0.

s3) If two curves intersect, stop. Call this point s,
then s, is switching point(Figure 4)
s4) If two curves do not intersect, forward curve

must meet the curve v=d¢ at some value of s.
Call this point s,.(Figure 5)

s5) At s=s5,, calculate the value of ddvdt, then
three cases are possible.

sSa) If ddvdr is smaller than LB, follow the
curve v=¢ from s=s,, until reaching a
point s=s; at which dd/dr equals to LB.
Construct a  curve that starts at
s=s54, v=d(s3) with LB in backward direc-
tion until it meets previously constructed
trajectory. Go to s6).

s5b) If dd/dr is within the range between LB
and UB, follow the curve v=¢ from s,,
until reaching a point s=s, at which the
value of ddvdr equals to LB or UB or this
curve meets final backward trajectory. If it
mects  backward  trajectory, stop. If
ddoidt = UB go to s6). If ddvdt = LB go
to s5a).

s5¢) I the value of ddvdr at s, is greater than
UB, go to s6).

s6) Construct a trajectory with maximum acceleration

in forward direction which starts from current

point until it meets a final deccleration curve or

the curve v=d¢. If it meets a final deceleration

curve, stop. If it meets the curve v=4, go to

s5).

All the intersection points of the trajectories are switching
point and this algorithm gives a sequence of curve seg-
ments which are under maximum acceleration or maximum
deceleration or identical to maximum allowable velocity
curve. The optimality in the sense of minimum-time is
obvious by noting the following : any trajectory of less
time has an interval of higher velocity than the trajectory
calculated by above algorithm, but that is impossible
without violating the constraint of acceleration bound,
because it nceds more acceleration or more deceleration
than permitted. Detail proof is omitted here.

The proposed algorithm gives exact solution for given
problem, but it is somewhat complex and time consuming.
Hence as an alternative we propose an approximate iterative
calculation version by discretizing the variable s by the
interval of As. Then admissible velocity range and accelera-
tion is described in discretized form ;

0 < = v, < dkAs) (31)
LB(kAs) = § = v, < UB(kAs) (32)
And also the accelerations are approximated as
2 2
Vier T Vi
i = —— (33)
2A8

acc dec

Fig4. Case when accelerating and decelerating curves inter-
sect

acc fol dec acc  dec

Fig5. Case when accelerating and decelerating curves do
not intersect



At this point we define each energy as
N-1

1
Ey = = 3 (@ka)-v) (34)
2
k=1
No1 (2, —p2
E, = S F kR UB(kAY)l
£=0 2As
N-1 vl 2
+ S FlLBkAs) - ———% ] (35)
= 2As
k=0
IZZ/Z z >0
F(z) = 36
@ 0 . <0 (36)

and sum these with weighting
E =w Ey +wy E; (37)

Introducing the concept of neural optimization network, we
determine differential equation of each v, as

dv, JE N-1
DA C O
dt dv, =1
— 2 2
MUt — % i
+ w, > f|l——— — UB(kAs)|—
o1 2As As
— 2 2
Nl Vel T Ve |
- w, S flLBlkas) - ———— |—
k=1 2As As
‘z z >0
) = 38
@) 0 2 <0 (38)
Then time derivative of total energy becomes
dE N-1 4 dv N1l dv
_— = — = - =<0 (39)
di v dr i Lt

till it reaches local minimum. We apply this idea to the
following robot system with the paths of Figure 1.

—25 Nm < uj <25 Nm

-7 Nm < u; <7 Nm

~2 radisec < q; < 2 rad/sec

-2.5 radisec = q; < 2.5 radisec r=1,2 (40)

By consulting Figurc 2 , we sclected a CFCC as

55 = (51 (41)
and initial v, as its largest value as
v(kAs) = blkAs) . k=12,., N (42)

The result is presented in Figure 6 and the joint velocitics
corresponding to finally settled solution are in Figure 7. It
is noteful that the result is same to that of [5], in which
dynamic programming technique is applied under same con-
ditions.

5. CONCLUDING REMARKS

A minimum-time t:ajectory planning method for mul-
tiple robots is presented. Specifically the case in which
paths and coordipation are given is considered.  After
deriving a planning method analytically, an iterative numeri-
cal solution approach based on the concept of neural optim-
ization network is applied.

The method presented in the paper needs further
refinements, especially to handle the local minimum prob-
lem, and to extend this method to more general cases.
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