• Title/Summary/Keyword: collapse rate

Search Result 221, Processing Time 0.026 seconds

Development of Performance Based Resistance Capacity Evaluation Method for RC Compression Member under Vehicle Impact Load (차량 충돌하중을 받는 RC 압축부재의 성능기반형 저항성능 평가방법 개발)

  • Kim, Jang-Ho Jay;Yi, Na-Hyun;Phan, Duc-Hung;Kim, Sung-Bae;Lee, Kang-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.535-546
    • /
    • 2010
  • Recently, the probability of collision accident between vehicles or vessels and infrastructures are increasing at alarming rate. Particularly, collision impact load can be detrimental to sub-structures such as piers and columns. The damaged pier from an impact load of a vehicle or a vessel can lead to member damages, which make the member more vulnerable to impact load due to other accidents which. In extreme case, may cause structural collapse. Therefore, in this study, the vehicle impact load on concrete compression member was considered to assess the quantitative design resistance capacity to improve, the existing design method and to setup the new damage assessment method. The case study was carried out using the LS-DYNA, an explicit finite element analysis program. The parameters for the case study were cross-section variation of pier, impact load angle, permanent axial load and axial load ratio, concrete strength, longitudinal and lateral rebar ratios, and slenderness ratio. Using the analysis results, the performance based resistance capacity evaluation method for impact load using satisfaction curve was developed using Bayesian probabilistic method, which can be applied to reinforced concrete column design for impact loads.

Morphological characteristics of the upper airway and pressure drop analysis using 3D CFD in OSA patients (폐쇄성 수면무호흡 환자의 상기도 형태의 특징과 압력강하에 관한 3차원 전산유체역학해석)

  • Mo, Sung-Seo;Ahn, Hyung-Taek;Lee, Jeong-Seon;Chung, Yoo-Sam;Moon, Yoon-Shik;Pae, Eung-Kwon;Sung, Sang-Jin
    • The korean journal of orthodontics
    • /
    • v.40 no.2
    • /
    • pp.66-76
    • /
    • 2010
  • Objective: Obstructive sleep apnea (OSA) is a common disorder which is characterized by a recurrence of entire or partial collapse of the pharyngeal airway during sleep. A given tidal volume must traverse the soft tissue tube structure of the upper airway, so the tendency for airway obstruction is influenced by the geometries of the duct and characteristics of the airflow in respect to fluid dynamics. Methods: Individualized 3D FEA models were reconstructed from pretreatment computerized tomogram images of three patients with obstructive sleep apnea. 3D computational fluid dynamics analysis was used to observe the effect of airway geometry on the flow velocity, negative pressure and pressure drop in the upper airway at an inspiration flow rate of 170, 200, and 230 ml/s per nostril. Results: In all 3 models, large airflow velocity and negative pressure were observed around the section of minimum area (SMA), the region which narrows around the velopharynx and oropharynx. The bigger the Out-A (outlet area)/ SMA-A (SMA area) ratio, the greater was the change in airflow velocity and negative pressure. Conclusions: Pressure drop meaning the difference between highest pressure at nostril and lowest pressure at SMA, is a good indicator for upper airway resistance which increased more as the airflow volume was increased.

Collapse Analysis of Ultimate Strength Considering the Heat Affected Zone of an Aluminum Stiffened Plate in a Catamaran (카타마란 알루미늄 보강판의 열영향부 효과를 고려한 최종강도 붕괴 해석)

  • Kim, Sung-Jun;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.542-550
    • /
    • 2020
  • The use of high-strength aluminum alloys for ships and of shore structures has many benefits compared to carbon steels. Recently, high-strength aluminum alloys have been widely used in onshore and of shore industries, and they are widely used for the side shell structures of special-purpose ships. Their use in box girders of bridge structures and in the topside of fixed platforms is also becoming more widespread. Use of aluminum material can reduce fuel consumption by reducing the weight of the composite material through a weight composition ratio of 1/3 compared to carbon steel. The characteristics of the stress strain relationship of an aluminum structure are quite different from those of a steel structure, because of the influence of the welding[process heat affected zone (HAZ). The HAZ of aluminum is much wider than that of steel owing to its higher heat conductivity. In this study, by considering the HAZ generated by metal insert gas (MIG) welding, the buckling and final strength characteristics of an aluminum reinforcing plate against longitudinal compression loads were analyzed. MIG welding reduces both the buckling and ultimate strength, and the energy dissipation rate after initial yielding is high in the range of the HAZ being 15 mm, and then the difference is small when HAZ being 25 mm or more. Therefore, it is important to review and analyze the influence of the HAZ to estimate the structural behavior of the stiffened plate to which the aluminum alloy material is applied.

Clinical Analysis of TEVAR in Blunt Thoracic Aortic Injury (둔상에 의한 흉부대동맥 손상에서 TEVAR에 관한 임상연구)

  • Ku, Gwan Woo;Choi, Jin Ho;Choi, Min Suk;Park, Sang Soon;Sul, Young Hoon;Go, Seung Je;Ye, Jin Bong;Kim, Joong Suck;Kim, Yeong Cheol;Hwang, Jung Joo
    • Journal of Trauma and Injury
    • /
    • v.28 no.4
    • /
    • pp.232-240
    • /
    • 2015
  • Purpose: Thoracic aortic injury is a life-threatening injury that has been traditionally treated by using surgical management. Recently, thoracic endovascular aortic repair (TEVAR) has been conducted pervasively as a better alternative treatment method. Therefore, this study will focus on analyzing the outcome of TEVAR in patients suffering from a blunt thoracic aortic injury. Methods: Of the blunt thoracic aortic injury patients admitted to Eulji University Hospital, this research focused on the 11 patients who had received TEVAR during the period from January 2008 to April 2014. Results: Seven of the 11 patients were male. At the time of admission, the mean systolic pressure was $105.64{\pm}24.60mm\;Hg$, and the mean heart rate was $103.64{\pm}20.02per$ minute. The median interval from arrival to repair was 7 (4, 47) hours. The mean stay in the ICU was $21.82{\pm}16.37hours$. In three patients, a chimney graft technique was also performed to save the left subclavian artery. In one patient, a debranching of the aortic arch vessels was performed. In two patients, the left subclavian artery was totally covered. In one patient whose proximal aortic neck length was insufficient, the landing zone was extended by using a prophylactic left subclavian artery to left common carotid artery bypass before TEVAR. There were no operative mortalities, but a patient who was covered of left subclavian artery died from ischemic brain injury. Complications such as migration, endovascular leakage, collapse, infection and thrombus did not occur. Conclusion: Our short-term outcomes of TEVAR for blunt thoracic aorta injury was feasible. Left subclavian artery may be sacrificed if the proximal landing zone is short, but several methods to continue the perfusion should be considered.

  • PDF

Youth Startup Firms: A Case Study on the Survival Strategy for Creating Business Performance (청년창업기업의 창업초기 생존전략 : 중진공 청년전용자금 활용기업 사례)

  • Lee, Seung-Chang;Lim, Won-Ho;Suh, Eung-Kyo
    • Journal of Distribution Science
    • /
    • v.12 no.6
    • /
    • pp.81-88
    • /
    • 2014
  • Purpose - Entrepreneurship promotion is emerging as an important economic growth agenda. However, in Korea, entrepreneurship has weakened because of the collapse of the venture bubbles of the 2000s and the global economic recession in 2008, which have induced the business community to choose stability over risk. The Korean government has been implementing several support projects to inspire and promote youth entrepreneurship through various means including financial assistance; however, the perpetuation rate of young entrepreneurship is still low as compared to advanced economies such as the US and EU. This case study focuses on the Youth Start-Up Business Support Program of the Small & Medium Business Corporation, and explores practical alternatives. Further, it aims to suggest managerial factors and a conceptual model for change management factors affecting the business performance creation of a startup company, based on the Small and medium Business Corporation's young venture startup fund. Research design, data, and methodology - Many studies examine the current progress and issues of startup firms, for example, a lack of systematic cultivation of entrepreneurship and startup business training, lack of commercialization funding for youth startup businesses, lack of mentoring, and inadequate infrastructure. From prior research, we address four factors, namely, personal managerial capabilities, innovative business model, sufficient cash flow, and social network, affecting startup companies' business performance. This study involved a sample survey of 200 young entrepreneurs to investigate casual relations between the four factors and business performance. A regression analysis was used to verify the hypotheses. Results - First, in relation to differences in the founder's personal characteristics, age, sales amount, and number of employees significantly impact business performance. Second, regarding the causal relation between the four factors for creating business performance, an innovative business model and social networking have supported the hypotheses, revealing that the more that a start-up founder has an innovative business model and social networking, the more the start-up firms are likely to have better performance (e.g., sales volume, employment, ROE, ROI, etc.). Although the founder's competency and sufficient cash flow have no significant relationship with business performance, the mean value was higher performance for high founder's competency and sufficient cash flow. Conclusions - This study provides basic data on policy support strategies of the Small and Medium Business Corporation, to help young entrepreneurs achieve their start-up business goals. It shows that young entrepreneurship startup firms should strive to explore ideas to satisfy customers' needs, and that changes in customer value and the continuous innovation of business model differentiation are required to actively respond to change management. Moreover, at the infant startup stage, they should activate social network programs to share information, thereby offsetting resource scarcity and managing business risk. Further, the establishment of a long-term vision and the implementation of training programs in related specific fields should be supported to strengthen founders' personal capabilities.

Optimization for Inspecdtion Planning of Ship Structures Considering Corrosion Effects (부식효과를 고려한 선체구조 검사계획안의 최적화)

  • Sung-Chan Kim;Jang-Ho Yoon;Yukio Fujimoto
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.137-146
    • /
    • 1999
  • Inspection becomes to be important in the safety of structure and economical viewpoint, because structural damage accompanies lots of economical cost and social problems. Especially ship structure is composed of a lot of members and it is impossible to inspect all members continuously. The purpose of this paper is to get optimal inspection plan containing inspection time and method. Crack is one of major modes on the structural failure and can lead to collapse of structure. In this paper, the deteriorating process, which contains inspection to detect the crack before the propagation to large crack, is idealized as Markov chain model. Genetic algorithm is also used to accomplish the optimization of inspection plan. Especially, the probabilistic characteristics of cracks are changed, because ship is operating in corrosive environments and the scantling of structural members is reduced due to corrosion. Non-stationary Markov chain model is used to represent the process of corrosion in structural members. In this paper, the characteristics of indivisual inspection plan are compared by numerical examples for the change of corrosion rate, the cost due to scheduled system down and target failure probability. From the numerical example, it can be seen that the improvement of fatigue life for the members with short fatigue life is the most effective way in order to reduce total maintenance cost.

  • PDF

A Critical Evaluation on the Pension Privatization Reform in Chile (칠레 연금민영화 개혁에 대한 평가)

  • Cho, Young-Hoon
    • Korean Journal of Social Welfare
    • /
    • v.50
    • /
    • pp.87-108
    • /
    • 2002
  • According to Neo-liberalism, the privatization of social security systems is pivotal for a country's economic growth and the wellbeing of its people, because such systems hinder the full operation of the market, eventually leading the national economy to collapse. The Chilean case of pension privatization is often cited as a good evidence for the Neo-liberal argument. Neo-liberalists say that Chile has experienced a rapid economic growth and retirees have enjoyed a much more pension payment since the national pension system was successfully privatized in 1981. The primary purpose of this article is to provide a critical review on the results of the Chilean pension privatization reform implemented in 1981. This study is intended to give an objective understanding of the reform because the existing evaluations, particularly those from the neo-liberalism, over-emphasize the bright sides of the reform. for this purpose, this article will pay a particular attention to the change in the level of pension payment after the reform. The conclusion of this study is that, contrary to the argument of Neo-liberalism, the pension reform has lowered the level of pension payment and, compared to the old public pension, has made the lives of ordinary retirees less secure. Reorganization of the social security system is more desirable than privatization as a remedy for the current problems of the welfare state.

  • PDF

Development of Scour Depth Calculation Equation Based on Hydraulic Model Test Data (수리모형실험 자료를 활용한 교각세굴심 산정식의 개발)

  • Chang, Hyung-Joon;Lee, Ho Jin;Lee, Hyo Sang;Kim, Sung-Duk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.163-168
    • /
    • 2020
  • Since the industrialization in the 1960s, Korea has been expanding its transportation infrastructure, such as building bridges. Owing to bridge construction, studies on stability review have been carried out, and stability-securing technology has been developed. On the other hand, these were applied mainly to the upper part of the bridge, so applications to the lower part are limited. In particular, scour at the bridge pier causes erosion in the riverbed and bridge collapse. Hence, prevention studies and countermeasures are needed. In this study, an empirical formula was developed to evaluate the scour depth of a bridge, which was calculated through multiple linear regression analysis using the hydraulic model study data conducted in previous studies. The formula, which had a value of 0.91, was applied to the model test data that was not used for development to verify the developed formula. When the pier scour depths were compared in 23 cases, the error rate was less than 20% in 16 cases (70%). The empirical formula developed in this study is applicable to pier scour-depth calculations. Further research will be needed to develop a more accurate empirical formula for pier scour-depth calculations, and it is expected to reduce bridge damage caused by scour.

A Review and Analysis of the Thermal Exposure in Large Compartment Fire Experiments

  • Gupta, Vinny;Hidalgo, Juan P.;Lange, David;Cowlard, Adam;Abecassis-Empis, Cecilia;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.345-364
    • /
    • 2021
  • Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large open-plan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (VS / VBO), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments.

Analysis of Slope Stability of Masonry Retaining Walls in Quarry (석산개발 지역 퇴적장 석축사면의 안정성 해석)

  • Ma, Ho-Seop;Lee, Sung-Jae
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.385-392
    • /
    • 2018
  • The slope stabilization analysis was performed by conducting survey and selecting the representative section in order to improve slope composition and management technology of masonry embankments in the quarry area, The mean slope of the masonry retain wall (A, B, C, D, E, F) was $38.5^{\circ}$, although the steep slope of the lowest slope (A) as $59^{\circ}$. The horizontal distance of the masonry embankments is 66.2 m and the slope height is 48.3 m. However, the inclination of the masonry embankments is relatively steep and visually unstable. The slope stability analysis for the slope stability analysis was taken into account during the drying and saturation. The slope stability analysis during saturation was performed by modeling the fully saturated slope. The strength constants of the ground were divided into two groups. The safety factor for dry period was 1.850 and the safety factor for rainy season was 1.333. The safety rate of dry period and rainy season was above 1.5 and 1.2. However, the weathered granite on the upper part of the masonry embankments at the time of heavy rainfall is considered to have a high risk of slope erosion and collapse. Therefore, it is considered necessary to take measures for stabilization through appropriate maintenance such as drainage installation.