Browse > Article
http://dx.doi.org/10.21022/IJHRB.2021.10.4.345

A Review and Analysis of the Thermal Exposure in Large Compartment Fire Experiments  

Gupta, Vinny (School of Civil Engineering, The University of Queensland)
Hidalgo, Juan P. (School of Civil Engineering, The University of Queensland)
Lange, David (School of Civil Engineering, The University of Queensland)
Cowlard, Adam (Torero, Abecassis Empis and Cowlard Ltd.)
Abecassis-Empis, Cecilia (Torero, Abecassis Empis and Cowlard Ltd.)
Torero, Jose L. (Department of Civil, Environmental & Geomatic Engineering, University College London)
Publication Information
International Journal of High-Rise Buildings / v.10, no.4, 2021 , pp. 345-364 More about this Journal
Abstract
Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large open-plan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (VS / VBO), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments.
Keywords
Compartment fires; Fire dynamics; Design fires; Travelling fires; Fire resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jowsey, A., Rein, G., Abecassis-empis, C., Cowlard, A. and Reszka, P. (2007). "An analytical approach to define surface heat fluxes to structural members in post-flashover fires", in Proc. 5th Int. Semin. Fire Explos. Hazards. Edinburgh: The University of Edinburgh, 692-701.
2 Khan, A. A., Usmani, A. and Torero, J. L. (2021). "Evolution of fire models for estimating structural fire-resistance", Fire Saf. J., 124, 103367.   DOI
3 Hidalgo, J. P., Goode, T., Gupta, V., Cowlard, A., AbecassisEmpis, C., Maclean, J., Bartlett, A. I., Maluk, C., Montalva, J. M., Osorio, A. F. and Torero, J. L. (2019). "The Malveira fire test: Full-scale demonstration of fire modes in open-plan compartments", Fire Saf. J., 108 (102827).
4 Hidalgo, J. P., Maluk, C., Cowlard, A., Abecassis-Empis, C., Krajcovic, M. and Torero, J. L. (2017). "A Thin Skin Calorimeter (TSC) for quantifying irradiation during large-scale fire testing", Int. J. Therm. Sci., 112, 383-394.   DOI
5 Ingason, H. and Wickstrom, U. (2007). "Measuring incident radiant heat flux using the plate thermometer", Fire Saf. J., 42(2), 161-166.   DOI
6 Ingberg, S. H. (1928). "Tests of the Severity of Building Fires", Q. Natl. Fire Prot. Assoc., 22, 43-61.
7 Jahn, W., Rein, G. and Torero, J. L. (2011). "A posteriori modelling of the growth phase Dalmarnock Fire Test One", Build. Environ., 46, 1065-1073.   DOI
8 Jowsey, A. (2006). Fire Imposed Heat Fluxes for Structural Analysis. The University of Edinburgh.
9 Kirby, B. R., Wainman, D. E., Tomlinson, L. N., Kay, T. R. and Peacock, B. N. (1994). Natural Fires in Large Scale Compartments, A British Steel Technical, Fire Research Station Collaborative Project.
10 Kirby, B. R., Wainman, D. E., Tomlinson, L. N., Kay, T. R. and Peacock, B. N. (1999). "Natural Fires in Large Scale Compartments", Int. J. Eng. Performance-Based Fire Codes, 1(2), 43-58.
11 Law, A. and Bisby, L. (2020). "The rise and rise of fire resistance", Fire Saf. J., 116, 103188.   DOI
12 Law, A., Stern-Gottfried, J., Gillie, M. and Rein, G. (2011). "The influence of travelling fires on a concrete frame", Eng. Struct., 33(5), 1635-1642.   DOI
13 Law, M. (1971). A relationship between fire grading and building design and contents - FRS No. 877, Fire Res. Note.
14 Law, M. (1983). "Basis for the Design of Fire Protection of Building Structures", Struct. Eng., 61 A(1), 25-33.
15 Law, M. and O'Brien, T. (1989). Fire safety of bare external structural steel. The Steel Construction Institute.
16 Lennon, T. (1998). "Large Compartment Fire Tests on a Full-Scale Eight Storey Building", in ASTM Spec. Tech. Publ. 1336, 55-70.
17 Lennon, T. and Moore, D. (2003). "The natural fire safety concept - Full-scale tests at Cardington", Fire Saf. J., 38(7), 623-643.   DOI
18 Maluk, C., Linnan, B., Wong, A., Hidalgo, J. P., Torero, J. L., Abecassis-Empis, C. and Cowlard, A. (2017). "Energy distribution analysis in full-scale open floor plan enclosure fires", Fire Saf. J., 91, 422-431.   DOI
19 Gross, D. and Robertson, A. F. (1965). "Experimental fires in enclosures", Symp. Combust., 10(1), 931-942.   DOI
20 Rackauskaite, E., Kotsovinos, P., Jeffers, A. and Rein, G. (2017). "Structural analysis of multi-storey steel frames exposed to travelling fires and traditional design fires", Eng. Struct., 150, 271-287.   DOI
21 Gupta, V. (2021). Open-plan compartment fire dynamics. The University of Queensland.
22 Gupta, V., Maluk, C., Torero, J. L. and Hidalgo, J. P. (2019). "Analysis of Convective Heat Losses in a Full-scale Compartment Fire Experiment", in Proc. 9th Int. Semin. Fire Explos. Hazards, 490-501.
23 Gupta, V., Osorio, A. F., Torero, J. L. and Hidalgo, J. P. (2020). "Mechanisms of flame spread and burnout in large enclosure fires", Proc. Combust. Inst., 38(3), 4525-4533.
24 Gupta, V., Torero, J. L. and Hidalgo, J. P. (2021). "Burning dynamics and in-depth flame spread of wood cribs in large compartment fires", Combust. Flame, 228, 42-56.   DOI
25 Cooke, G. M. E. (1998). Tests to Determine the Behaviour of Fully Developed Natural Fires.
26 Cowlard, A., Bittern, A., Abecassis-empis, C. and Torero, J. L. (2013). "Some Considerations for the Fire Safe Design of Tall Buildings", Int. J. High-Rise Build., 2(1), 63-77.
27 Haggkvist, A., Sjostrom, J. and Wickstrom, U. (2013). "Using plate thermometer measurements to calculate incident heat radiation", J. Fire Sci., 31(2), 166-177.   DOI
28 Harmathy, T. Z. (1972). "A new look at compartment fires, Part I", Fire Technol., 8, 196-217.   DOI
29 Heidari, M., Kotsovinos, P. and Rein, G. (2019). "Flame extension and the near field under the ceiling for travelling fires inside large compartments", Fire Mater., 44(3), 421-436.
30 Hidalgo-Medina, J. P. and Hidalgo, J. P. (2015). Performance-Based Methodology for the Fire Safe Design of Insulation Materials in Energy Efficient Buildings. The University of Edinburgh.
31 Drysdale, D. (2011). An Introduction to Fire Dynamics. 3rd edn. Wiley.
32 Hidalgo, J. P., Cowlard, A., Abecassis-Empis, C., Maluk, C., Majdalani, A. H., Kahrmann, S., Hilditch, R., Krajcovic, M. and Torero, J. L. (2017). "An experimental study of full-scale open floor plan enclosure fires", Fire Saf. J., 89, 22-40.   DOI
33 Shorter, G. W. (1959). St. Lawrence Burns: general report. Ottowa
34 Dai, X., Welch, S. and Usmani, A. (2017). "A critical review of 'travelling fire' scenarios for performance-based structural engineering", Fire Saf. J., 91, 568-578.   DOI
35 Engelhardt, M. D. M. D., Meacham, B., Kodur, V., Kirk, A., Park, H., Straalen;, van Straalen, I., Maljaars, J., van Weeren, K., De Feijter, R. and Both, K. (2013). "Observations from the Fire and Collapse of the Faculty of Architecture Building, Delft University of Technology", in Struct. Congr. 2013. ASCE Pittsburgh, 1-12.
36 Fernandez-Pello, A. C. and Hirano, T. (1983). "Controlling mechanisms of flame spread", Combust. Sci. Technol., 32(1-4), 1-31.   DOI
37 Finney, M. A., Cohen, J. D., Forthofer, J. M., McAllister, S. S., Gollner, M. J., Gorham, D. J., Saito, K., Akafuah, N. K., Adam, B. A., English, J. D. and Dickinson, R. E. (2015). "Role of buoyant flame dynamics in wildfire spread", Proc. Natl. Acad. Sci. U. S. A., 112(32), 9833-9838.
38 Gales, J. (2014). "Travelling Fires and the St. Lawrence Burns Project", Fire Technol., 50(6), 1535-1543.   DOI
39 Gales, J., Chorlton, B. and Jeanneret, C. (2021). "The Historical Narrative of the Standard Temperature-Time Heating Curve for Structures", Fire Technol. Springer, 529-558.
40 Gann, R. G. (2005). Reconstruction of the fires in the world trade center towers, NIST NCSTAR.
41 Dai, X., Welch, S., Vassart, O., Cabova, K., Jiang, L., Maclean, J., Clifton, G. C. and Usmani, A. (2020). "An extended travelling fire method framework for performance-based structural design", Fire Mater., 44(3), 437-457.   DOI
42 Horova, K., Jana, T. and Wald, F. (2013). "Advances in Engineering Software Temperature heterogeneity during travelling fire on experimental building", Adv. Eng. Softw., 62-63, 119-130.   DOI
43 Kawagoe, K. (1958). Fire behaviour in rooms, Rep. Build. Res. Inst.
44 Gillie, M., Usmani, A., Rotter, M. and O'Connor, M. (2001). "Modelling of heated composite floor slabs with reference to the Cardington experiments", Fire Saf. J., 36(8), 745-767.   DOI
45 Thomas, P. H. (1973). "Behavior of fires in enclosures-Some recent progress", Symp. Combust., 14(1), 1007-1020.   DOI
46 Alpert, R. L. (1975). "Turbulent ceiling-jet induced by large-scale fires", Combust. Sci. Technol., 11(5-6), 197-213.   DOI
47 Charlier, M., Vassart, O., Dai, X., Welch, S., Sjostrom, J., Anderson, J. and Nadjai, A. (2020). "A simplified representation of travelling fire development in large compartment using CFD analyses", in Proc. 11th Int. Conf. Struct. Fire, 526-536.
48 Council on Tall Buildings and Urban Habitat. (2021). CTBUH Year in Review : Tall Trends of 2020 Tall Buildings in 2020 : COVID-19 Contributes To Dip in Year-On-Year Completions.
49 Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. (2002). EN 1991-1-2. CEN Brussels.
50 Fletcher, I. A. 1; Welch, S., Alvear, D., Lazaro, M., Capote, J. A. A., Alvear, ; and Lazaro, ; (2007). "Model-based analysis of a concrete building subjected to fire", in Proc. 4th Int. Work. Sructures Fire, 779-790. Available at: https://era.ed.ac.uk/handle/1842/1988.
51 Torero, J. L. (2013). "Scaling-Up fire", Proc. Combust. Inst., 34(1), 99-124.   DOI
52 Thomas, P. H., Heselden, A. J. and Law, M. (1967). Fully-developed Compartment Fires: Two Kinds of Behaviour, Fire Res. Tech. Pap. No. 18. H.M. Stationery Office.
53 Thomas, P. H. and Heselden, A. J. M. (1962). "Behaviour of fully developed fire in an enclosure", Combust. Flame, 6(C), 133-135.   DOI
54 Thomas, P. H. and Heselden, A. J. M. (1972). Fully Developed Fires in Single Compartments.
55 Torero, J. L., Law, A. and Maluk, C. (2017). "Defining the thermal boundary condition for protective structures in fire", Eng. Struct., 149, 104-112.   DOI
56 Torero, J. L., Majdalani, A. H., Abecassis-Empis, C. and Cowlard, A. (2014). "Revisiting the compartment fire", in Proc. 11th Int. Symp. Fire Saf. Sci., 28-45.
57 Masson, L. (2003). The Use of an Instrumented Steel Billet to Measure Incident Heat Flux. MSc Thesis. University of Ulster.
58 Gamba, A., Charlier, M. and Franssen, J.-M. (2020). "Propagation tests with uniformly distributed cellulosic fire load", Fire Saf. J., 117(103213), 1-11.
59 Gillie, M., Usmani, A. S. and Rotter, J. M. (2001). "A structural analysis of the first Cardington test", J. Constr. Steel Res., 57(6), 581-601.   DOI
60 Gupta, V., Hidalgo, J. P., Cowlard, A., Abecassis-Empis, C., Majdalani, A. H., Maluk, C. and Torero, J. L. (2021). "Ventilation effects on the thermal characteristics of fire spread modes in open-plan compartment fires", Fire Saf. J., 120(103072), 1-9.
61 McCaffrey, B. J., Quintiere, J. G. and Harkleroad, M. F. (1981). "Estimating room temperatures and the likelihood of flashover using fire test data correlations", Fire Technol., 17(2), 98-119.   DOI
62 Nadjai, A., Alam, N., Charlier, M., Vassart, O., Dai, X., Franssen, J. and Sj. (2020). "Travelling fire in full scale experimental building subjected to open ventilation conditions", in Proc. 11th Int. Conf. Struct. Fire. Brisbane: The University of Queensland, 439-450.
63 Prahl, J. and Emmons, H. W. (1975). "Fire induced flow through an opening", Combust. Flame, 25(C), 369-385.   DOI
64 Usmani, A. S., Rotter, J. M., Lamont, S., Sanad, A. M. and Gillie, M. (2001). "Fundamental principles of structural behaviour under thermal effects", Fire Saf. J., 36(8), 721-744.   DOI
65 Welch, S., Jowsey, A., Deeny, S., Morgan, R. and Torero, J. L. (2007). "BRE large compartment fire tests-Characterising post-flashover fires for model validation", Fire Saf. J., 42(8), 548-567.   DOI
66 Torero, J. L. (2016). "Flaming Ignition of Solid Fuels", in SFPE Handb. Fire Prot. Eng. New York: Springer, New York, NY, 633-661.
67 Pchelintsev, A., Hasemi, Y., Wakarnatsu, T. and Yokobayashi, Y. (1997). "Experimental And Numerical Study On The Behaviour Of A Steel Beam Under Ceiling Exposed To A Localized Fire", Fire Saf. Sci., 5(m), 1153-1164.   DOI
68 PIT Project: Behaviour of steel framed structures under fire conditions. Main Report. (2000).
69 Rackauskaite, E., Hamel, C., Law, A. and Rein, G. (2015). "Improved Formulation of Travelling Fires and Application to Concrete and Steel Structures", Structures, 3, 250-260.   DOI
70 Wakamatsu, T., Hasemi, Y., Kagiya, K. and Kamikawa, D. (2003). "Heating mechanism of unprotected steel beam installed beneath ceiling and exposed to a localized fire: Verification using the real-scale experiment and effects of the smoke layer", Fire Saf. Sci., 1099-1110.   DOI
71 Sanad, A. M., Lamont, S., Usmani, A. S. and Rotter, J. M. (2000). "Structural behaviour in fire compartment under different heating regimes - part 2: (slab mean temperatures)", Fire Saf. J., 35(2), 117-130.   DOI
72 Rein, G., Zhang, X., Williams, P., Hume, B., Heise, A., Jowsey, A., Lane, B. and Torero, J. L. (2007). "Multi-Storey Fire Analysis for High-Rise Buildings", in 11th Interflam, 605-616.
73 Rush, D., Dai, X. and Lange, D. (2020). "Tisova Fire Test - fire behaviours and lessons learnt", Fire Saf. J., 103261.
74 Sanad, A. M., Lamont, S., Usmani, A. S. and Rotter, J. M. (2000). "Structural behaviour in fire compartment under different heating regimes - Part 1 (slab thermal gradients)", Fire Saf. J., 35(2), 99-116.   DOI
75 SFPE Engineering Standard on Calculating Fire Exposures to Structures. (2011). Society of Fire Protection Engineers.
76 Sjostrom, J., Hallberg, E., Kahl, F., Temple, A., Welch, S., Dai, X., Gupta, V., Lange, D. and Hidalgo, J. (2019). Characterization of TRAvelling FIRes in large compartments.
77 Stern-Gottfried, J. and Rein, G. (2012). "Travelling fires for structural design-Part I: Literature review", Fire Saf. J., 54, 74-85.   DOI
78 Stern-Gottfried, J. and Rein, G. (2012). "Travelling fires for structural design-Part II: Design methodology", Fire Saf. J., 54, 96-112.   DOI
79 Stern-Gottfried, J., Rein, G., Bisby, L. A. and Torero, J. L. (2010). "Experimental review of the homogeneous temperature assumption in post-flashover compartment fires", Fire Saf. J., 45(4), 249-261.   DOI
80 The SFPE Task Group on Fire Exposures to Structural Elements. (2004). SFPE Engineering Guide on Fire Exposures to Structural Elements.
81 Clifton, C. G. (1996). Fire Models for Large Firecells.
82 Abecassis-Empis, C., Reszka, P., Steinhaus, T., Cowlard, A., Biteau, H., Welch, S., Rein, G. and Torero, J. L. (2008). "Characterisation of Dalmarnock fire Test One", Exp. Therm. Fluid Sci., 32(7), 1334-1343.   DOI
83 Ahmadi, M. T., Aghakouchak, A. A., Shahmari, A., Modares, T., Mirghaderi, R., Tahouni, S., Garivani, S., Shahmari, A. and Epackachi, S. (2020). "Collapse of the 16-Story Plasco Building in Tehran due to Fire", Fire Technol., 56(2), 769-799.   DOI
84 Alpert, R. L. (1972). "Calculation of response time of ceiling-mounted fire detectors", Fire Technol., 8(3), 181-195.   DOI
85 Thomas, I., Moinuddin, K. and Bennetts, I. (2005). "Fire development in a deep enclosure", in Proc. 8th Int. Symp. Fire Saf. Sci., 1277-1288.
86 International Organization for Standardization. (1999). "ISO 834-1:1999, Fire-resistance tests -- Elements of building construction -- Part 1: General requirements".
87 Behnam, B. (2019). "Fire Structural Response of the Plasco Building: A Preliminary Investigation Report", Int. J. Civ. Eng., 17(5), 563-580.   DOI
88 Bergman, T. L., Lavine, A. S., Incropera, F. P. and DeWitt, D. P. (2011). Fundamentals of heat and mass transfer. 7th ed. Hoboken, NJ: Hoboken, NJ: Wiley.
89 Killick, R., Fearnhead, P. and Eckley, I. A. (2012). "Optimal detection of changepoints with a linear computational cost", J. Am. Stat. Assoc., 107(500), 1590-1598.   DOI
90 Heidari, M., Rackauskaite, E., Bonner, M., Christensen, E., Morat, S., Mitchell, H., Kotsovinos, P., Turkowski, P., Wegrzynski, W., Tofilo, P. and Rein, G. (2020). "Fire experiments inside a very large and open-plan compartment: x-TWO", in 11th Int. Conf. Struct. Fire, 479-491.
91 Majdalani, A. H., Cadena, J. E., Cowlard, A., Munoz, F. and Torero, J. L. (2016). "Experimental characterisation of two fully-developed enclosure fire regimes", Fire Saf. J., 79, 10-19.   DOI