• Title/Summary/Keyword: collapse function

Search Result 161, Processing Time 0.022 seconds

A Study on Power System Voltage Stability Analysis by the Direct Lyapunov Function (Luapunov 직접법에 의한 전력계통 전압안정도 해석)

  • 문영현;박능수;이태식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.693-702
    • /
    • 1994
  • This paper deals with direct voltage stability analysis using a power system energy function. The structure preserved energy function is proposed as an energy function for voltage stability analysis. With the use of the proposed energy function voltage collapse conditions are derived, which yields the exactly same results with the Jacobian matrix approach. The voltage collapse phenomenon is analyzed by several methods, which shows that all of the methods produce the same voltage condition. This study also investigates the voltage collapse dynamics by using the proposed energy function. As a result, it has been found that the voltage collapse can be classified into two categories: static and dynamic instablilties which have quite different behaviors. In addition a new method is presented to calculate the power capacity limit of transmission lines with respect to voltage stability. The proposed method is tested for a 2-bus sample system, which shows the characteristics of voltage collapse phenomenon via the energy function.

Derivation of an Energy Function Based on Vector Product and Application to the Power System with Transfer Conductances and Capacitors (벡터 곱에 근거한 에너지함수 유도와 선로 컨덕턴스 및 커패시터를 포함한 전력시스템에의 적용 연구)

  • Moon Young-Hyun;Oh Yong-Taek;Lee Byung Ha
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.274-283
    • /
    • 2005
  • This paper presents a new method to derive energy function based on vector product. Using this method, an energy function to consider transfer conductances and capacitors is derived. Then we recommend a voltage collapse criteria to predict the voltage collapse in power systems by using the energy margin derived by the proposed energy function. This energy function is applied to a 2-bus power system reflecting transfer conductances and capacitors. We show that the energy function derived based on vector product can be applied in order to analyze power system stability and the energy margin can be utilized as a criterion of voltage collapse by simulation for the 2-bus system.

Effect of seismic design level on safety against progressive collapse of concentrically braced frames

  • Rezvani, Farshad Hashemi;Asgarian, Behrouz
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.135-156
    • /
    • 2014
  • In this research the effect of seismic design level as a practical approach for progressive collapse mitigation and reaching desired structural safety against it in seismically designed concentric braced frame buildings was investigated. It was achieved by performing preliminary and advanced progressive collapse analysis of several split-X braced frame buildings, designed for each seismic zone according to UBC 97 and by applying various Seismic Load Factors (SLFs). The outer frames of such structures were studied for collapse progression while losing one column and connected brace in the first story. Preliminary analysis results showed the necessity of performing advanced element loss analysis, consisting of Vertical Incremental Dynamic Analysis (VIDA) and Performance-Based Analysis (PBA), in order to compute the progressive collapse safety of the structures while increasing SLF for each seismic zone. In addition, by sensitivity analysis it became possible to introduce the equation of structural safety against progressive collapse for concentrically braced frames as a function of SLF for each seismic zone. Finally, the equation of progressive collapse safety as a function of bracing member capacity was presented.

Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames

  • Kia, M.;Banazadeh, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.203-214
    • /
    • 2018
  • Predictive demand and collapse fragility functions are two essential components of the probabilistic seismic demand analysis that are commonly developed based on statistics with enormous, costly and time consuming data gathering. Although this approach might be justified for research purposes, it is not appealing for practical applications because of its computational cost. Thus, in this paper, Bayesian regression-based demand and collapse models are proposed to eliminate the need of time-consuming analyses. The demand model developed in the form of linear equation predicts overall maximum inter-story drift of the lowto mid-rise regular steel moment resisting frames (SMRFs), while the collapse model mathematically expressed by lognormal cumulative distribution function provides collapse occurrence probability for a given spectral acceleration at the fundamental period of the structure. Next, as an application, the proposed demand and collapse functions are implemented in a seismic fragility analysis to develop fragility and consequently seismic demand curves of three example buildings. The accuracy provided by utilization of the proposed models, with considering computation reduction, are compared with those directly obtained from Incremental Dynamic analysis, which is a computer-intensive procedure.

Surface Subsidence according to Progressive Collapse of Circular opening (원형공동의 점진적인 붕락에 따른 지표침하특성)

  • 지정배;김종우
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.33-44
    • /
    • 2000
  • In order to investigate the effect of progressive collapse of underground circular opening on surface subsidence, laboratory model tests were performed. The modelling materials were sand which has been used as KS standard. Six test models which had respectively different depths of openings were produced. Surface subsidence and horizontal displacements were measured according to progressive collapse of underground opening. Some subsidence prediction method such as NCB method, profile function method and influence function method were considered to predict the subsidence of sand models. The profile function method approximated by Gaussian error function was finally suggested as the most appropriate to sand models.

  • PDF

DIRECT COMPUTATION OF MARGINAL OPERATING CONDITIONS FOR VOLTAGE COLLAPSE

  • Lee, Kyung-Jae;Jung, Tay-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.195-201
    • /
    • 1989
  • Voltage collapse is a serious concern to the electirc utility industry. It is common to associate steady-state stability with the ability of the transmission system to transport real power and to associate voltage collapse with the inability to provide reactive power at the necessary locations within the system. An algorithm to directly calculate the critical point of system voltage collapse was presented by the authors. The method (based on the ordinary power flow equations and explicit requirement of singularity of the Jacobian matrix) is basically one degree of freedom with proper load distribution factors. This paper suggests a modified algorithm to increase the degree of freedom, introducing the nonlinear programming technique. The objective function is a distance measure between the present operating point and the closest voltage collapse point. Knowledge of the distance and the most vulnarable bus from the voltage collapse point of view may be used as a useful index for the secure system operation.

  • PDF

Complete lower bound solutions of circular plate collapse problems by a finite difference method (원형평판의 붕괴문제에 관한 유한차분 완전 하계해)

  • Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1382-1390
    • /
    • 1990
  • Accurate load-carrying capacities and moment distributions of thin circular plates are obtained for clamped or simply-supported boundary condition under various concentrated circular loadings. The material is regarded as perfectly-plastic based on an arbitrary yield function such as the Tresca yield function, the Johansen yield function, and the farmily of .betha.-norms which possesses the von Mises yield function and the Frobenius norm. To obtain the lower bound solutions, a maximization formulation is derived and implemented for efficient numerical calculation with a finite difference method and the modified Newton's method. The numerical results demonstrate plastic collapse behavior of circular plates and provide their design criteria.

Collapse Analysis for Deep Sea Pressure Vessel (심해용 압력용기에 대한 붕괴해석)

  • Shin, Jang-Ryong;Woo, Jong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.82-97
    • /
    • 1999
  • A deep sea vehicle must be designed to ensure its safety under ultra-high pressure circumstances. If a pressure housing of a deepsea vehicle is collapsed by ultra-high pressure, the deepsea vehicle may be lost. The objective of this paper is to introduce a design collapse pressure for the deep sea pressure vessel which is composed of one cylinder and two hemispheres. Especially the collapse pressure of hemispherical shell with a hole at top is analyzed by a variational approach (weighted residual method). And for the purpose of design, the salty factor of collapse pressure is presented which is analyzed by interpolation method.

  • PDF

Endochronic simulation for viscoplastic collapse of long, thick-walled tubes subjected to external pressure and axial tension

  • Lee, Kuo-Long;Chang, Kao-Hua
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.627-644
    • /
    • 2004
  • In this study, the endochronic theory was used to investigate the collapse of thick-walled tubes subjected to external pressure and axial tension. The experimental and theoretical findings of Madhavan et al. (1993) for thick-walled tubes of 304 stainless steel subjected to external pressure and axial tension were compared with the endochronic simulation. Collapse envelopes for various diameter-to-thickness tubes under two different pressure-tension loadings were involved. It has been shown that the experimental results were aptly described by the endochronic approach demonstrated from comparison with the theoretical prediction employed by Madhavan et al. (1993). Furthermore, by using the rate-sensitivity function of the intrinsic time measure proposed by Pan and Chern (1997) in the endochronic theory, our theoretical analysis was extended to investigate the viscoplastic collapse of thick-walled tubes subjected to external pressure and axial tension. It was found that the pressure-tension collapse envelopes are strongly influenced by the strain-rate during axial tension. Due to the hardening of the metal tube of 304 stainless steel under a faster strain-rate during uniaxial tension, the size of the tension-collapse envelope increases.

Quick and Accurate Computation of Voltage Stability Margin

  • Karbalaei, Farid;Abasi, Shahriar
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • It is well known that the behavior of PV curves is similar to a quadratic function. This is used in some papers to approximate PV curves and calculate the maximum-loading point by minimum number of power flow runs. This paper also based on quadratic approximation of the PV curves is aimed at completing previous works so that the computational efforts are reduced and the accuracy is maintained. To do this, an iterative method based on a quadratic function with two constant coefficients, instead of the three ones, is used. This simplifies the calculation of the quadratic function. In each iteration, to prevent the calculations from diverging, the equations are solved on the assumption that voltage magnitude at a selected load bus is known and the loading factor is unknown instead. The voltage magnitude except in the first iteration is selected equal to the one at the nose point of the latest approximated PV curve. A method is presented to put the mentioned voltage in the first iteration as close as possible to the collapse point voltage. This reduces the number of iterations needed to determine the maximum-loading point. This method is tested on four IEEE test systems.