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Abstract

Voltage <collapse is a serious concern
to the electirc utility industry. It is
common to associate steady~state
stability with the ability of the
transmission system to transport real
power and to associate voltage collapse
with the inability to provide reactive
power at the necessary locations within
the system. An algorithm to directly
calculate the critical point of system
voltage collapse was presented by the
authors. . The method (based on the
ordinary power flow equations and
explicit requirement of singularity of
the Jacobian matrix) is basically one
degree of freedom with proper 1load
distribution factors.

This paper suggests a modified algorithm
to increase the degree of freedom,
introducing the nonlinear programming
technique. The objective function is a
distance measure between the present
operating point and the closest voltage
collapse point. Knowledge of the
distance and the most wvulnarable bus
from the voltage collapse point of view
may be used as a useful 1index for the
secure system operation.

Introduction

The power system operating environment

of today has substantially increased
the difficulty of maintaining an
acceptable system voltage profile.

Problems associated with the steady-
state stability and voltage collapse of
electric power systems have become
increasingly important and have received

singnificant attention from many
researchers. Low voltages can result
in loss of stability and voltage

collapse, and ultimately to cascading
power outages. Voltage difficulties have
been associated recently with major
incidents in several countries [1,2].
Several factors have contributed to this
situation, including the use of higher
voltage transmission lines, the relative
insufficiency of reactive power reserves

that result from the use of 1large
generating units and from the shift in
power flow patterns associated with
transmission economy and generator
availability. Research efforts have
resulted in several different
methodologies for the coordination and
utilization of the reactive power and
voltage control resources of a system.
Venikov et atl [3] recognized the
singnificance of a degeneracy 1in the
Jacobian matrix with respect to the
steady-state stability of a power
system. They observed that, under
certain conditions, a change in the
sign of .the determinant of the Jacobian
matrix during a continuous variation of
parameters coincides with the movement
of a real characteristic root -of the
linearized swing equations across the
imaginary axis into the right half of
the complex plane.

Tamura et al [4] have confirmed that
multiple flow solutions are 1likely to
apper under heavy load conditions.
This seems to be related to voltage
instability, especially when a pair of
solutions are located close each other.
Barbier and Barret [5] suggested an
approximate method to calculate critical
value of bus voltage as a threshold

value. Using a maximum transfer
condition and reduced bus admittance
matrices, bus voltage stability is

checked in a static manner.

Carpentier et al [68] defined a proximity
indicator for voltage collapse for a
bus, an area or the complete system,
as a vector of ratios dQ/dD, where dQ is
the incremental generated reactive
power at a generator when a given
reactive load demand increases by dD.
When any element of this vector of
ratios becomes infinite, voltage
collapse is said to occur, Optimal
power flows are proposed to evaluate
these indicators.

Kessel and Glavitsch [7] proposed a
different type of indicator to express
the risk of voltage collapse. The
indicator uses information from a normal
power flow and it can be obtained with
resonable computational effort. They
uesd a hybrid model, where partial
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inversion of the bus admittance matrix
for the load buses necessary to generate
a hybrid matrix.

Tranuchit and Thomas [8] proposed the
minimum singular value of the Jacobian
of the descriptor network equations as a
voltage security index. Instead of
performing singular value decomposition
for every change of system operating
conditions, they established incremental
linear relationship between parameters
(dP’s and dQ’s) and increments of the
minimum singular value.

Jarjis and Galiana [9] suggested a
method for the analysis of voltage
stability that does not rely upon power
flow or optimal power flow simulations.
It 1is based on the concept of the
feasibility regions of power flow maps
and the feasibility margins. This is an
exact method. However, the procedure
does not Tlend itself to an application
in larger systems due to the enormous
computational requirements.

H .G. Kwatny et al [10] presented a
precise definition of static stability
and voltage collapse based upon static
bifurcation theory. Static bifurcations
of the power flow equations were
analyzed using the Liapunov-Schimit
reduction and Tavlor series expansion of
the resulting reduced bifurcation
equations. It was shown that static
bifurcations of the power flow equations
were associated with either divergence-
type instability or loss of causality.
Sekine and Yokoyama [11] proposed an
eigenvalue method to detect .voltage
instability. They showed that voltage
instability is influenced by multiple
solutions and by various dynamic
characteristics of loads and control
equipment. It 1is also shown that a
static var compensator at the receiving
end of long distance transmission line
improves the voltage stability.

DeMarco and Bergen [12}, recognizing
recent developments 1in the theory of
large deviations within nonlinear
systems, used a set of stochastic
differential equations to represent the
power system model, where the load
demand is modeled as random white noise
with zero mean. He related the voltage
cooapse to the phenomenon where the
system trajectory of the stochastic
dynamics leaves any bouded region in
finite time with probability one.
Alvarado and Jung [19] proposed a simple
and elegant algorithm to directly
calculate the critical point without
numerical difficulties. The method used
the power flow equations, and a
requirement of the singularity of
Jacobian matrix. This algorithm is very
efficient to find out the voltage
collapse conditions, but restricted to
one degree of freedom with a proper load
distribution factor.

This paper extends the former algorithm
develagped in [19]) introducing nontlinear
optimization techniques to increase the
degree of freedom. Monitoring the
distance from the present operating
point to the most vulnarable bus or

buses (from the voltage collapse point
of view) will be an essential role for
the secure operation of powewr systems.

System Representation and Problem
Formulation

This section presents system models and
mathematical formulations. Voltage
collapse will be described for a two
terminal system then extended 1into a
general multi-machine and multi-load
systems.

Two Bus System with a Constant Voltage
Source

A very simple power system for
understanding voltage collapse phenomena
is shown 1in Figure 1. 1In this system a
constant voltage generator supplies
power to a load via a single lossless
transmission line with its series
admittance =-jB and shunt admittance
jBsh. Assume that the source voltage Vi
is 1.0/0, and the load bus voltage is
V2 /4. The 1load has real and reactive
powers P and Q respectively. The system
and line condition may be the Thevenin
equivalent of a system as seen by a
toad.

From the ordinary power flow equations,
we obtain the following system equations
for P and Q,

P = =B V2 SIN(-K) (1)
Q = B V2 COS(AK) - (B-Bsnh) V22 (2a)
Q = P({1-pfZ)/pf (2b)

Eliminating & and Q@ from equations (1)
and (2), we obtain:

P2 - 2pf {T-pfZ(B-Ben) V22P
+ pf2 ((B-Benh )2 V24 - B2V22) = O (3)

Equation (3) represents the relationship
between TJload bus voltage and active
power to be supplied to the load under
steady-state conditions. Figure 2 shows
the 1oci of P vs V2 parameterizing the
power factor under the assumption of 8 =
5.0 and Bsan = 0.1 pu.

The following are observations from
Figure 2:

For a given load power factor, there
exists a critical point beyond which
the power cannot be transmitted. Wwe
call the power corresponding to this
critical point a steady~-state
stability 1imit and the bus voltage
to this Timit value a critical
voltage.

For each active power level P, except
at the critical point, there are two
operating points for each 1lcad bus
voltage V2. One is a high voltage
operating point (we call this point
the stable operating point), and the
other one 1is lower than the critical
voltage (we call it a unstable
operating point) [12]. At the
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critical point dP/dvVz becomes zero.
If the load attempts to increase
beyond the c¢ritical point, then the
system will not have a feasible
operating point and system collapse
may result,

The critical values vary according to
system conditions, such as
rescheduling of generation power,
generation bus voltage, and power
factor of the load buses.

If 1instead of controlling the power
factor we assume that the reactive power
of the 1locad bus is ‘controlled, the
reactive power Q is represented by:

@ - (B~Bsn) Vz2 + JBEV2Z - P2 = 0 (4)

where Q@ is the required amount of the
reactive compensation. Figure 3 depicts
the loci of @ vs for a given P under the
same assumptions.

The results are similar to those in
Figure 2. For a given fixed value of P,
no feasible solution is expected if the
reactive power compensation is not
sufficient. If for any reson the system
is opreated at the Tower voitage
operating point, then the bus volitage
magnitude will decrease gradually along
the contour of constant P, in spite of
increasing reactive power compensation.
If the load is supplied by transformers
with on load tap changers, they will try
to raise the voltage at the terminais of
the load, which has the effect of
reducing its apparent impedance as seen
from the system, and therefore of
fowering voltage st111 further until
the on-load tap changers reach their
1imit. This is the phenomenon of voltage
collapse discussed in [5].

Multi-Machine and Multi-Load Power
Systems

The relationship between toad bus
voltage and active power for a very
simple two node system is derived in the
previous section. Now we want to
generalize this concept to an n+i1 bus
system. lLet’s suppose that the system
has m generation buses one of which is
swing bus and n-m+1 load buses. Buses
with both a load and a gensrator or both
a load and reactive sources connected
will be considered as generating buses.
Furthermore, we assume that buses with
generators or reactive sources are
ordered first and with the swing bus
being the first bus. Analogous to the
voltage/power relation 1in (4) are the
following power flow equations [13],

n
fi = P5 - Z ViVk(gix COS(ol;-%)
K=1

+ bixk SIN(: 0k )) = O {5)

n
gi = Qi - X ViVe{gix SIN(ch o)
k=1
- bik SIN(Gi-k)) = O (8)

for i = 2,..., nti. Where (Pi,Qi) is the
net complex power entering into bus 1,
¥i is the voltage magnitude of bus i, o
is the voltage angle difference of bus i
from a slack bus, and gix+jbik 1is the
(i,3) element of bus admittance matrix.
These equation can be written in compact
form as,

f{x,p) = 0 (7)
where,
f = [fz,...,Fn+1,82,...,Gn+11T: Ré¢nR2n
X = [ 2,..., 'ne1,V2,...,Vase1]T € R20
p = [Pz,...,Pns1,Q2,...,@n+11T € R2n

The superscript T denotes transposition.
A -number of ways have been developed .to
find a solution of equation (7) for any
specified parameter vector p [13]. Our
goal here 1is not to discuss solution
methods, but to investigate the
phemonena at the critical conditions. We

amy use the chain rule of
differentiation and the continuation
method {9]. Assume X and P are

parameterized by an arbitrary scalar t,
and the Jlocus of (7) is defined as the

set of points (x,p) such that f(x,p) =
0. Then,

df(x,p)/dt=fx (dx/dt)+fp (dp/dt) = © (8)

where, fx =af/ @ x (2nx2n Jacobian
matrix}), dx/dt (2nx1 vector), fp'= 3f/ap
{(2nx2n identity matrix), and dp/dt is a
2n x 1 vector respectively. Conditions
in equation (8) must be satfsfied for
all (x,p) on the trajectory of feasible
solutions, We assume implicitly the
continuity and differentiability of all
functions involved. Solutions x(t) to
equation (7) are obtained by solving the
following differ rential equation set,

fx (dx/dt) = -(dp/dt) (9)

we now investigate changes in
equilibrium for variations in the
parameters P. Suppose only one load (say
lcad 1) 1is changing. At the critical
point, dPi/dVs becomes zero because the
active power at bus 1 can be increased
further and so do the remaining elements
of dP/dVi. Under these circumstances, we
may write equation (9) as:

fx (dx/dvs) = ~dp/dVi = 0. (10}

Since dx/dVi 1is nonzero, then it must be
the case that the Jacobian matrix is
singular. This represents the extension
from the voltage/power sensitivity
problem in the two bus system to the
general n+1 bus system. We propose an
efficient direct method for finding the
power flow solutions with a requrement
of singularity of the Jacobian matrix.
Let:

fxy = 0 (11)
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f(x,p) = 0 (12)
ys = 1.0 (13)

where y is a 2nxt transform vector.
. Equation (13) insures that the vector y

is nontrivial. Equation (11) together
with equation (13) establishes the
singularity of the Jacobian. Equation

(12) requires that they satisfy the
power flow equations.

Solving the above equations
simultaneously for both x and y for the
specified p, these solutions lead to one

of the critical points of the system.In
equatons (11), (12) and (13), there are
4an+1 equations with 4n variables and 2n
parameters. Therefore, only 2n-1
(instead of 2n) parameters can be
specified independently and one
parameter is dependent on the others
(one degree of freedom). The above
discussions are related how to find a

critical condition using the singularity

of the Jacobian with one degree of
freedom. However, it is frequentily
desirable to calculate the closest
critical condition from the present
operating point with more degrees of
freedom. This problem can be resolved

with the 1idea of minimizing a distance
using the following nonlinear
optimization technique:
k .
Minimize:d =Z_. (pi - pi*)? (14)
i=21

Subject to:

where d is the square of distance
between the present state and the
critical condition, pi* is the present
value of ith parameter, and k is the
number of parameters to be changed.

Simulation and Results

A five bus system as shown in Figure 4
is considered. This system has two
generators at buses 1 and 3 and three
load buses, 2, 4, and 5. The 1ine
parameters, bus data, and the base case
power flow results for this system are
given in Appendices A, B, and c
repectively. The equations for this
system are symbolically generated from
equations (11)-(13). These equations are
then simply solved using modern software
capable of solving arbitrary sets of
nonlinear equations by exact Newton’s
method with symbolically computed
Jacobians, full use of sparse matrix
techniques, and pivoting for numerical
error control [14-18].

As discussed in the previous section,
finding the critical operating condition
is equivalent to finding singularity
condition for the Jacobian matrix of the
power flow equations. Under the base

case condition
that bus

in appendix C, assume
5 gradually increases its real

power consumption. Voltage in buses 1
and 3 1is assumed constant at 1.04 and
1.02 pu respectively. There are seven

system variables; V2, az, Vs, Ve, as, Vs
and as in equation (13). There are seven
independent active and reactive power
flow equations.

To find out the critical voltage and
power for bus 5 by the direct method
sugested in this paper, fifteen
equations are necessary. The eight

additional equations come from equations
(12) and (14). This yields a complete
set of equation to find out a critical
operating point with respect to changing
Ps. Table 1 shows the results for the
critical situation calculated by the new
algorithm for the case that all byt
remain the same as base case condition.

Ordinary power flow calculations also

" have been pervformed for different levels

of Ps. Two solutions are obtained for
each level of P5 by specifying different
initial conditions for the bus voltage
magnitudes. Figure 5 shows the
trajectories of Va, Vs, asa, as for the
different values of Ps.

The critical real power consumption at
bus 5 is about 4.6963 pu. The same value
is obtained either by directly solving
equations (11)-(13) with the general
purpose symbolic equation solving
software, or by repetitive solutions
of the ordinary power flow equations.
Notice that the critical point found by
the repetitive power flow calcuations is

just an interpolation point because the
numerical ill-conditioning in the
Newton-Raphson power flow routine does
not allow an exact calculation at the

bifurcation point due to the singularity
of the Jacobian matrix at that point
[158]. The new formulation of problem
determines this singularity point

exactly. The matrices associated with
the new formulation do not become
singular at the critical point.

Furthermore, convergence gets worse for
ordinary power flow method as the system

condition approaches to the critical
point but convergence is excellent for
the new method. Bus angles also approach
to critical conditions as the voltage
magnitudes approach to the critical
points. The associated bus voltage

infinitely sensitive to
in the parameters. This
property is generally associatied with
loss of steady-state stability. The
bifurcation is associated with infinite
sensitivity of the associated bus
voltage magnitudes with respect to
parameter perturbations. This property
is considered as the essential feature
of voltage collapse [10]. Figure 5 shows
that bus angles at buses 4 and 5§
increase gradually as the 1load in the
bus increases and they become more than
45 degrees at the critical condition.

angles become
small changes
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fo make the problem more ggneraT,
suppose Pis+Ps is 5.3024 pu. In this case
all other parameters except P4 and Ps
remain constant as the base case and
only P+ and Ps are undefined. As.shown
in Table 2 and Figure 6, there is an

“agreement between the results calculated
directly by the new algorithm and the
values calculated as the limit point by
the ordinary power flow equations. The
maximum discrepancy between two results
is than 0.5%. Table 3 shows the closest
critical condition to the base case
shown in Appendix B and C. This results
are calculated using the nonliner
optimization technique described  1in
equation (14). In this case, reactive
loads at buses 4 and 5 are assumed an
half of the real load respectively. The
above simulation results show the
applicability of the new algorithm. For
a given system operating condition, we
can check the distance from the critical
condition which may cause voltage
collapse for the most vulnerable bus or
buses in a certain area using this new
algorithm, If the situation on the most
vulnerable bus or buses are close to the
critical condition, then system
operators can take proper measures to
prevent system instability.

TJable 1 calcylation results for Ps at
critical condition.(Ps = 4.6963 pu)
Vi=1.04pu ai1= 0.0deg

V2=0.8161 az=-23.0845
Va=1.0200. a3=-32.5211
V4=0.6841 as=-48,8962
Vs=0,6322 as=-47.4810

Table 2 Comparison of calculation
results at critical condition with
direct method and ordinary power flow
method, (Ps+Ps = 5.3024 pu)

Direct Power flow
method method
P4a+Ps 5.3024 pu. 5.3024 pu.
Va2 0.9231 0.9228
Va 0.7203 0.7188
Vs 0.6388 0.6366
az =21.497 deg. -21.566 deg.
as -29.8626 -29.9772
as -40.9550 -41,1040
as -46.4841 ~46.,6731

,,,,,, The closest
from the base case in

critical condition

Vi=1.04 pu. a1 =0.0 deg.
V2=0.8536 az=-11.4203
V3 =1.0200 a3=-12.6303
Va=0.5542 a4=-34.9802
V5=0.8550 as=-12.2554

“[2]1 H.

Conclusions

A new formulation can be used to find
the critical operating point for voltage

collapse. This method wused both a
singularity of the Jacobian matrix
criterion and nonlinear optimization

techniques., The resulting method shows a
numerically stable behavior. Futhermore
the method 1is able to detect voltage
collapse on any bus or buses under
specified system states. This method
may enable system operators to more
rapidly and accurately monitor the
proximity of the present operating point
to a critical point and to take proper
measures to prevent system instablity
well before it occures without using any
indices for volitage collapse.
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Appendix A: Line parameters for five
. bus test system

Line (bus to bus) G(pu) B{(pu)

1 2 1.40056 -5.60224
1 5 1.84118 ~7.48352
2 3 1.84118 -7.48352
3 4 0.70028 -2.80112
3 5 1.12985 -4.47675
4 5 0.93372 -3.73483
Appendix B: Bus data for 5 bus test

system

Bus NO. P(pu) Q(pu) Charging
1 1.54058 0.72499 0.03600
2 -1.15000 -0.60000 0.01800
3 1.10000 0.78317 0.08200
4 -0.70000 -0.30000 0.03575
5 -0.70000 -0.40000 0.03575

Appendix C: Base case power flow
results for the test system

Vi = 1.04(pu) a1 = 0.00(deg)
Vz = 0.9603" az = -5.974

Vs = 1.0200 aa = -3.22

Ve = 0.9151 as = -10.078

Vs = 0.9681 as = -5.248
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Figure 1. One line diagram of a simple
two termainal test system.
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