• Title/Summary/Keyword: coli B

Search Result 1,634, Processing Time 0.036 seconds

Comparative Analysis of Envelope Proteomes in Escherichia coli B and K-12 Strains

  • Han, Mee-Jung;Lee, Sang-Yup;Hong, Soon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.470-478
    • /
    • 2012
  • Recent genome comparisons of E. coli B and K-12 strains have indicated that the makeup of the cell envelopes in these two strains is quite different. Therefore, we analyzed and compared the envelope proteomes of E. coli BL21(DE3) and MG1655. A total of 165 protein spots, including 62 nonredundant proteins, were unambiguously identified by two-dimensional gel electrophoresis and mass spectrometry. Of these, 43 proteins were conserved between the two strains, whereas 4 and 16 strain-specific proteins were identified only in E. coli BL21(DE3) and MG1655, respectively. Additionally, 24 proteins showed more than 2-fold differences in intensities between the B and K-12 strains. The reference envelope proteome maps showed that E. coli envelope mainly contained channel proteins and lipoproteins. Interesting proteomic observations between the two strains were as follows: (i) B produced more OmpF porin with a larger pore size than K-12, indicating an increase in the membrane permeability; (ii) B produced higher amounts of lipoproteins, which facilitates the assembly of outer membrane ${\beta}$-barrel proteins; and (iii) motility- (FliC) and chemotaxis-related proteins (CheA and CheW) were detected only in K-12, which showed that E. coli B is restricted with regard to migration under unfavorable conditions. These differences may influence the permeability and integrity of the cell envelope, showing that E. coli B may be more susceptible than K-12 to certain stress conditions. Thus, these findings suggest that E. coli K-12 and its derivatives will be more favorable strains in certain biotechnological applications, such as cell surface display or membrane engineering studies.

Functional expression of CalB in E.coli (대장균에서의 Candida antarctica lipase B 최적 발현)

  • Kim, Hyun-Sook;Kim, Yong-Hwan
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.445-448
    • /
    • 2008
  • Candida antarctica lipase B (CalB) is an efficient biocatalyst for many organic synthesis reactions. To make full use of CalB, we need effective expression system. Previously recombinant CalB was successfully expressed in the methylotropic yeast Pichia pastoris. In addition, we succeed in the functional expression of CalB in the Escherichia coli cytoplasm. This CalB expression system in E.coli has many considerable advantages in comparison with other expression systems and enables high-throughput screening of gene libraries as those derived from directed evolution experiments. To optimize E.coli system, we investigate comparing between OrigamiB (DE3) and BL21 (DE3) and observing effect of IPTG amount.

Induced reactivation of T3 phage in ozone treated strains of Escherichia coli B (오존 처리된 E. coli B 에서의 T3 파아지의 재활성 유도)

  • LHerault Pierre
    • Korean Journal of Microbiology
    • /
    • v.25 no.2
    • /
    • pp.117-121
    • /
    • 1987
  • The ozone-induced reactivation factor for ozonated or UV-irradiated T3 phage was determined in defferent bacterial strains of Escherichia coli B resistant of sensitive to ozone. Our results suggest that ozone is a weak, if any at all, inducer of the Weigle reactivation, one of the SOS functions. This is in agreement with other studies which have suggested that thes agent is probably a weak inducer of the SOS functions.

  • PDF

Cloning of Bacillus amyloliquefaciens amylase gene using YEp13 as a vector I. Expression of cloned amylase gene in Escherichia coli (YEp 13 vector를 이용한 Bacillus amyloliquefaciens amylase gene의 cloning I. Escherichia coli에서의 발현)

  • 이창후;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.155-160
    • /
    • 1986
  • $\alpha$-Amylase gene of B. amyloliquefaciens was cloned to E. coli-yeast shuttle vector YEp-13 and expressed in E. coli. Chromosomal DNA of B. amyloliquefaciens was partially digested with Sau3Al and YEp13 plasmid was cleaved with BamH1. The hybrid plasmid, pHA28, was constructed by shotgun method and transformed to E. coli C600 and HB101. The amount of $\alpha$-amylase produced by transformants of E. coli was about 20% to 30% of that produced by B. amyloli-quefaciens. About 65% of $\alpha$-amylase produced by transformant was secreted into periplasm and the others were located in cytoplasm. $\alpha$-Amylase production was maximal when transformants were cultivated for 15hr to 20hr. As the result of agarose gel electrophoresis, pHA28 plasmid was found to be various in its size. This result suggested that pHA28 plasmid was segregated.

  • PDF

Expression and Characterization of Escherichia coli Adhesin Protein Linked to Cholera Toxin A2/B Subunits in Escherichia coli

  • Lee, Young-Hwa;Ryu, Dong-Kyun;Rhee, Dong-Kwon;Pyo, Suhk-Neung
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.309.2-309.2
    • /
    • 2002
  • The FimH subunit of type l-fimbriated Escherichia coli has been determined as a major cause of urinary tract infection. To produce a possible vaccine antigen against urinary tract infection, the fimH gene was genetically coupled to the ctxa2b gene, which was then cloned into pMAL -p2E expression vector. The chimaeric construction of pMALfimH/ctxa2b was transformed into Escherichia coli TB1 and its N-terminal amino acid sequence was analyzed. (omitted)

  • PDF

Immunization with a Genetically Engineered Uropathogenic Escherichia coli Adhesin-Escherichia coli Enterotoxin Subunit A2B Chimeric Protein

  • Lee, Yong-Hwa;Kim, Byung-O;Pyo, Suhk-Neung
    • Biomolecules & Therapeutics
    • /
    • v.13 no.2
    • /
    • pp.101-106
    • /
    • 2005
  • The generation of secretory IgA antibodies (Abs) for specific immune protection of mucosal surfaces depends on stimulation of the mucosal immune system, but this is not effectively achieved by parenteral or even oral administration of most soluble antigens. Thus, to produce a possible vaccine antigen against urinary tract infections, the uropathogenic E. coli (UPEC) adhesin was genetically coupled to the heat-labile Escherichia coli enterotoxin A2B (ltxa2b) gene and cloned into a pMAL-p2E expression vector. The chimeric construction of pMALfimH/ltxa2b was then transformed into E. coli K-12 TB1 and its nucleotide sequence was verified. The chimeric protein was then purified by applying the affinity chromatography. The purified chimeric protein was confirmed by SDS-PAGE and westem blotting using antibodies to the maltose binding protein (MBP) or the heat labile E. coli subunit B (LTXB), plus the N-terminal amino acid sequence was analyzedd. The orderly-assembled chimeric protein was confirmed by a modified $G_{M1}$-ganglioside ELISA using antibodies to adhesin. The results indicate that the purified chimeric protein was an Adhesin/LTXA2B protein containing UPEC adhesin and the $G_{M1}$-ganglioside binding activity of LTXB. thisstudy also demonstrate that peroral administration of this chimeric immunogen in mice elicited high level of secretory IgA (sIgA) and serum IgG Abs to the UPEC adhesin. The results suggest that the genetically linked LTXA2B acts as a useful mucosal adjuvant, and that adhesin/LTXA2A chimeric protein might be a potential antigen for oral immunization against UPEC.

Effects of Host Cell on the Morphology and Solubility of CryI and CytA Protein of Bacillus thuringiensis (Bacillus thuringiensis의 CryI과 CytA 단백질의 형태와 용해도에 대한 숙주의 영향)

  • Kim, Moo-Key;Ahn, Byung-Koo
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.23-30
    • /
    • 1998
  • The cryIB, truncated cryIB$[cryIB({\alpha})]$, cryIA(b), and cytA genes, encoding 135-, 89-, 131-, and 27-kDa proteins, respectively, from Bacillus thuringiensis were cloned into a shuttle vector pBES and expressed in E. coli and Bacillus species. The morphology and solubility in alkaline buffer of the insecticidal crystal proteins were investigated. Transformation of intact cells of E. coli and Bacillus species was achieved by electroporation. High field strength of 11.0 kV/cm and resistance of 129 ohms were required for efficient transformation of E. coli strains and 4.5 kV/cm and 48 ohms for Bacillus species. Strains of recombinant E. coli and Bacillus species produced the insecticidal crystal proteins and accumulated as the same bipyramidal and irregular structures as those of CryIB and IA(b) and CytA of B. thuringiensls, respectively. The insecticidal crystal proteins accumulated in recombinant E. coli wire smaller in size than those in recombinant Bacillus species. The solubility in alkaline buffer of the insecticidal crystal proteins of recombinant E. coli increased gradually as the pH increased, whereas in the case of Bacillus species the solubility increased gradually as the pH increased up to 9 and then the solubility increased greatly up to two times higher than that of E. coli proteins.

  • PDF

Transcriptome Analysis of Phosphate Starvation Response in Escherichia coli

  • Baek, Jong-Hwan;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.244-252
    • /
    • 2007
  • Escherichia coli has a PhoR-PhoB two-component regulatory system to detect and respond to the changes of environmental phosphate concentration. For the E. coli W3110 strain growing under phosphate-limiting condition, the changes of global gene expression levels were investigated by using DNA microarray analysis. The expression levels of some genes that are involved in phosphate metabolism were increased as phosphate became limited, whereas those of the genes involved in ribosomal protein or amino acid metabolism were decreased, owing to the stationary phase response. The upregulated genes could be divided into temporarily and permanently inducible genes by phosphate starvation. At the peak point showing the highest expression levels of the phoB and phoR genes under phosphate-limiting condition, the phoB- and/or phoR-dependent regulatory mechanisms were investigated in detail by comparing the gene expression levels among the wild-type and phoB and/or phoR mutant strains. Overall, the phoB mutation was epistatic over the phoR mutation. It was found that PhoBR and PhoB were responsible for the upregulation of the phosphonate or glycerol phosphate metabolism and high-affinity phosphate transport system, respectively. These results show the complex regulation by the PhoR-PhoB two-component regulatory system in E. coli.

Comprehensive Analysis of Proteomic Differences between Escherichia coli K-12 and B Strains Using Multiplexed Isobaric Tandem Mass Tag (TMT) Labeling

  • Han, Mee-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2028-2036
    • /
    • 2017
  • The Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for scientific research and biotechnological applications. However, omics analyses have revealed that E. coli K-12 and B exhibit notably different genotypic and phenotypic attributes, even though they were derived from the same ancestor. In a previous study, we identified a limited number of proteins from the two strains using two-dimensional gel electrophoresis and tandem mass spectrometry (MS/MS). In this study, an in-depth analysis of the physiological behavior of the E. coli K-12 and B strains at the proteomic level was performed using six-plex isobaric tandem mass tag-based quantitative MS. Additionally, the best lysis buffer for increasing the efficiency of protein extraction was selected from three tested buffers prior to the quantitative proteomic analysis. This study identifies the largest number of proteins in the two E. coli strains reported to date and is the first to show the dynamics of these proteins. Notable differences in proteins associated with key cellular properties, including some metabolic pathways, the biosynthesis and degradation of amino acids, membrane integrity, cellular tolerance, and motility, were found between the two representative strains. Compared with previous studies, these proteomic results provide a more holistic view of the overall state of E. coli cells based on a single proteomic study and reveal significant insights into why the two strains show distinct phenotypes. Additionally, the resulting data provide in-depth information that will help fine-tune processes in the future.

Growth Inhibition of Escherichia coli during Heterologous Expression of Bacillus subtilis Glutamyl-tRNA Synthetase that Catalyzes the Formation of Mischarged Glutamyl-$tRNA_{l}$$^{Gln}$

  • Baick, Ji-Won;Yoon, Jang-Ho;Suk Namgoong;Dieter Soll;Kim, Sung-Il;Eom, Soo-Hyun;Hong, Kwang-Won
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.111-116
    • /
    • 2004
  • It is known that Bacillus subtilis glutamyl-tRNA synthetase (GluRS) mischarges E. coli $tRNA_{1}$$^{Gln}$ with glutamate in vitro. It has also been established that the expression of B. subtilis GluRS in Escherichia coli results in the death of the host cell. To ascertain whether E. coli growth inhibition caused by B. subtilis GluRS synthesis is a consequence of Glu-$tRNA_{1}$$^{Gln}$ formation, we constructed an in vivo test system, in which B. subtilis GluRS gene expression is controlled by IPTG. Such a system permits the investigation of factors affecting E. coli growth. Expression of E. coli glutaminyl-tRNA synthetase (GlnRS) also amelio-rated growth inhibition, presumably by competitively preventing $tRNA_{1}$$^{Gln}$ misacylation. However, when amounts of up to 10 mM L-glutamine, the cognate amino acid for acylation of $tRNA_{1}$$^{Gln}$, were added to the growth medium, cell growth was unaffected. Overexpression of the B. subtilis gatCAB gene encoding Glu-$tRNA^{Gln}$ amidotransferase (Glu-AdT) rescued cells from toxic effects caused by the formation of the mis-charging GluRS. This result indicates that B. subtilis Glu-AdT recognizes the mischarged E. coli Glu-$tRNA_{1}$$^{Gln}$, and converts it to the cognate Gln-$tRNA_{1}$$^{Gln}$ species. B. subtilis GluRS-dependent Glu-$tRNA_{1}$$^{Gln}$ formation may cause growth inhibition in the transformed E. coli strain, possibly due to abnormal protein synthesis.