Growth Inhibition of Escherichia coli during Heterologous Expression of Bacillus subtilis Glutamyl-tRNA Synthetase that Catalyzes the Formation of Mischarged Glutamyl-$tRNA_{l}$$^{Gln}$

  • Baick, Ji-Won (Department of Food Science and Technology, Dongguk University) ;
  • Yoon, Jang-Ho (Department of Food Science and Technology, Dongguk University) ;
  • Suk Namgoong (Graduate School of Biotechnology, Korea University) ;
  • Dieter Soll (Department of Molecular Biophysics and Biochemistry, Yale University) ;
  • Kim, Sung-Il (Hyonam Kidney Laboratory, Soon Chun Hyang University) ;
  • Eom, Soo-Hyun (Department of Life Science, Kwangju Institute of Technolog) ;
  • Hong, Kwang-Won (Department of Food Science and Technology, Dongguk University)
  • Published : 2004.06.01

Abstract

It is known that Bacillus subtilis glutamyl-tRNA synthetase (GluRS) mischarges E. coli $tRNA_{1}$$^{Gln}$ with glutamate in vitro. It has also been established that the expression of B. subtilis GluRS in Escherichia coli results in the death of the host cell. To ascertain whether E. coli growth inhibition caused by B. subtilis GluRS synthesis is a consequence of Glu-$tRNA_{1}$$^{Gln}$ formation, we constructed an in vivo test system, in which B. subtilis GluRS gene expression is controlled by IPTG. Such a system permits the investigation of factors affecting E. coli growth. Expression of E. coli glutaminyl-tRNA synthetase (GlnRS) also amelio-rated growth inhibition, presumably by competitively preventing $tRNA_{1}$$^{Gln}$ misacylation. However, when amounts of up to 10 mM L-glutamine, the cognate amino acid for acylation of $tRNA_{1}$$^{Gln}$, were added to the growth medium, cell growth was unaffected. Overexpression of the B. subtilis gatCAB gene encoding Glu-$tRNA^{Gln}$ amidotransferase (Glu-AdT) rescued cells from toxic effects caused by the formation of the mis-charging GluRS. This result indicates that B. subtilis Glu-AdT recognizes the mischarged E. coli Glu-$tRNA_{1}$$^{Gln}$, and converts it to the cognate Gln-$tRNA_{1}$$^{Gln}$ species. B. subtilis GluRS-dependent Glu-$tRNA_{1}$$^{Gln}$ formation may cause growth inhibition in the transformed E. coli strain, possibly due to abnormal protein synthesis.

Keywords

References

  1. Proc. Natl. Acad. Sci. USA v.95 Thermus thermophilus: A link in evolution of the tRNA-dependent amino acid amidation pathways Becker, H.D.;D. Kern https://doi.org/10.1073/pnas.95.22.12832
  2. FEBS Lett. v.476 The heterotrimeric Thermus thermophilus Asp-tRN$A^{Asn}$ amidotransferase can also generate Gln-tRN$A^Gln$ Becker, H.D.;B. Min;C. Jacobi;G. Raczniak;J. Pelaschier;H. Roy;S. Klern;D. Kern;D. Soll https://doi.org/10.1016/S0014-5793(00)01697-5
  3. Nature v.382 tRNA-dependent asparagine formation Curnow, A.;M. Ibba;D. Soll
  4. Pro. Natl. Acad. Sci. USA v.94 Glu-tRN$A^{Gln}$ amidotransferase: A novel heterotrimeric enzyme required for corret decoding of glutamin codons during translation Curnow, A.W.;K.W. Hong;R. Yuan;S.I. Kim;O. Martins;W. Winler;T.M. Henkin;D. Soll https://doi.org/10.1073/pnas.94.22.11819
  5. J. Biol. Chem. v.271 Widespread use of the Glu-tRN$A^{Gln}$ transamidation patheway among bacteria. A member of the alpha purple bacteria lacks glutaminy-tRNA synthetase Gagnon, Y;L. Lacoste;L. Champagne;J. Lapointe https://doi.org/10.1074/jbc.271.25.14856
  6. FEBS Lett. v.434 Retracing the evolution of amino acid specificity in glutaminyⅠ-tRNA synthetase Hong, K.W.;M. Ibba;D. Soll https://doi.org/10.1016/S0014-5793(98)00968-5
  7. J. Bacteriol. v.165 A single glutamyl-tRNA synthetase aminoacylates tRN$A^{Glu}$ and tRN$A^{Gln}$ in Bacilus subtilis and efficiently misacylates Escherichia coli tRN$A^{Gln}$ in vitro Lapointe, J.;L. Duplain;M. Proulx
  8. Science v.294 Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation LaRiviere, F.J.;A.D. Wolfson;O.C. Uhlenbeck https://doi.org/10.1126/science.1064242
  9. tRNA: Structure, Biosynthesis and Function Meinnel, L.L.;Y. Mechulam;S. Blanquet;Soll, D.;Raj Bhandary, U.(ed.)
  10. J. Bacteriol. v.185 Protein synthesis in Escherichia coli with mischarged tRNA Min. B.;M. Kitabatake;C. Polycarpo;J. Pelaschier;G. Raczniak;B. Ruan;H. Kobayashi;S. Namgoong;D. Soll https://doi.org/10.1128/JB.185.12.3524-3526.2003
  11. J. Microbiol. Biotechnol. v.11 Cloning of Glu-tRN$A^{Gln}$ amidotransferase (gatCAB) gene from staphylococcus aureus Namgoong, S.;K.W. Hong;S.Y. Lee
  12. J. Korean Soc. Agric. Chem. Biotechnol. v.45 Overexpression and purification of Bacillus subtills glutamyl-tRNA synthetase in Escherichia coli Oh, J.S.;J.H. Yoon;K.W. Hong
  13. Can. J. Microbiol. v.44 Overproduction of the Bacillus subtills glutamyl-tRNA synthetase in its host and its toxicity to Escherichia coli Pelchat, M.;L. Lacoste;F. Yang;J. Lapointe https://doi.org/10.1139/cjm-44-4-378
  14. Toxicology v.160 Genomics-based identification of targets in pathogenic bacteria for protential therpeutic and diagnostic use Raczniak. G.;M. Ibba;D. Soll https://doi.org/10.1016/S0300-483X(00)00454-6
  15. Biochimie v.70 Misaminoacylation and transamidation are required for protein biosynthesis in Lactobacillus bulgaricus Schon, A.;H. Hottinger;D. Soll https://doi.org/10.1016/0300-9084(88)90212-X
  16. Nature v.331 Protein biosynthesis in organelles requires misaminoacylation of tRNA Schon, A.;C.G. Kannangara;S. Gough;D. Soll https://doi.org/10.1038/331187a0
  17. Eur. J. Biochem. v.219 Discrimination against misacylated tRNA by chloroplast elongation factior Tu Stanzel, M.;A. Schon;M. Sprinzl https://doi.org/10.1111/j.1432-1033.1994.tb19956.x
  18. Proc. Natl. Acad. Sci. USA v.61 Transfer RNA as a cofactor coupling amino acid synthesis with that of protein Wilcox, M.;M. Nirenberg https://doi.org/10.1073/pnas.61.1.229
  19. J. Miol. Biol. v.304 GE2270A-resistant mutations in elongation factor Tu allow productive aminoacyl-tRNA binding to EF-Tu.GTP. GE2270A complexes Zuurmond, A.M.;J.M. de Graaf;L.N. Olsthoorn-Tieleman;B.Y. van Duyl;V.G. Morhle;F. Jurnak;J.R. Mesters;R. Hilgenfeld;B. Kraal https://doi.org/10.1006/jmbi.2000.4260