Browse > Article
http://dx.doi.org/10.4014/jmb.1110.10080

Comparative Analysis of Envelope Proteomes in Escherichia coli B and K-12 Strains  

Han, Mee-Jung (Department of Biomolecular and Chemical Engineering, Dongyang University)
Lee, Sang-Yup (Departments of Chemical and Biomolecular Engineering (BK21 Program), Bio and Brain Engineering, and Biological Sciences, BioProcess Engineering Research Center, Bioinformatics Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST)
Hong, Soon-Ho (School of Chemical Engineering and Bioengineering, University of Ulsan)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.4, 2012 , pp. 470-478 More about this Journal
Abstract
Recent genome comparisons of E. coli B and K-12 strains have indicated that the makeup of the cell envelopes in these two strains is quite different. Therefore, we analyzed and compared the envelope proteomes of E. coli BL21(DE3) and MG1655. A total of 165 protein spots, including 62 nonredundant proteins, were unambiguously identified by two-dimensional gel electrophoresis and mass spectrometry. Of these, 43 proteins were conserved between the two strains, whereas 4 and 16 strain-specific proteins were identified only in E. coli BL21(DE3) and MG1655, respectively. Additionally, 24 proteins showed more than 2-fold differences in intensities between the B and K-12 strains. The reference envelope proteome maps showed that E. coli envelope mainly contained channel proteins and lipoproteins. Interesting proteomic observations between the two strains were as follows: (i) B produced more OmpF porin with a larger pore size than K-12, indicating an increase in the membrane permeability; (ii) B produced higher amounts of lipoproteins, which facilitates the assembly of outer membrane ${\beta}$-barrel proteins; and (iii) motility- (FliC) and chemotaxis-related proteins (CheA and CheW) were detected only in K-12, which showed that E. coli B is restricted with regard to migration under unfavorable conditions. These differences may influence the permeability and integrity of the cell envelope, showing that E. coli B may be more susceptible than K-12 to certain stress conditions. Thus, these findings suggest that E. coli K-12 and its derivatives will be more favorable strains in certain biotechnological applications, such as cell surface display or membrane engineering studies.
Keywords
Envelope protein; Escherichia coli; outer membrane protein; proteomics; two-dimensional gel electrophoresis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jeong, H., V. Barbe, C. H. Lee, D. Vallenet, D. S. Yu, S. H. Choi, et al. 2009. Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). J. Mol. Biol. 394: 644-652.   DOI   ScienceOn
2 Jordan, K. N., L. Oxford, and C. P. O'Byrne. 1999. Survival of low-pH stress by Escherichia coli O157:H7: Correlation between alterations in the cell envelope and increased acid tolerance. Appl. Environ. Microbiol. 65: 3048-3055.
3 Knowles, T. J., A. Scott-Tucker, M. Overduin, and I. R. Henderson. 2009. Membrane protein architects: The role of the BAM complex in outer membrane protein assembly. Nat. Rev. Microbiol. 7: 206-214.   DOI   ScienceOn
4 Lee, J. W., S. Y. Lee, H. Song, and J. S. Yoo. 2006. The proteome of Mannheimia succiniciproducens, a capnophilic rumen bacterium. Proteomics 6: 3550-3566.   DOI   ScienceOn
5 Leverrier, P., D. Vertommen, and J. F. Collet. 2010. Contribution of proteomics toward solving the fascinating mysteries of the biogenesis of the envelope of Escherichia coli. Proteomics 10: 771-784.   DOI   ScienceOn
6 Madan Babu, M. and K. Sankaran. 2002. DOLOP - database of bacterial lipoproteins. Bioinformatics 18: 641-643.   DOI   ScienceOn
7 Malinverni, J. C., J. Werner, S. Kim, J. G. Sklar, D. Kahne, R. Misra, and T. J. Silhavy. 2006. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol. Microbiol. 61: 151-164.   DOI   ScienceOn
8 Masuda, K., S. Matsuyama, and H. Tokuda. 2002. Elucidation of the function of lipoprotein-sorting signals that determine membrane localization. Proc. Natl. Acad. Sci. USA 99: 7390-7395.   DOI   ScienceOn
9 Maurer, L. M., E. Yohannes, S. S. Bondurant, M. Radmacher, and J. L. Slonczewski. 2005. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J. Bacteriol. 187: 304-319.   DOI   ScienceOn
10 Minamino, T., Y. Imae, F. Oosawa, Y. Kobayashi, and K. Oosawa. 2003. Effect of intracellular pH on rotational speed of bacterial flagellar motors. J. Bacteriol. 185: 1190-1194.   DOI   ScienceOn
11 Molloy, M. P., B. R. Herbert, M. B. Slade, T. Rabilloud, A. S. Nouwens, K. L. Williams, and A. A. Gooley. 2000. Proteomic analysis of the Escherichia coli outer membrane. Eur. J. Biochem. 267: 2871-2881.   DOI   ScienceOn
12 Nandi, B., R. K. Nandy, A. Sarkar, and A. C. Ghose. 2005. Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae. Microbiology 151: 2975-2986.   DOI   ScienceOn
13 Nikaido, H. 1996. Multidrug efflux pumps of Gram-negative bacteria. J. Bacteriol. 178: 5853-5859.   DOI
14 Nikaido, H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67: 593-656.   DOI   ScienceOn
15 Walsh, N. P., B. M. Alba, B. Bose, C. A. Gross, and R. T. Sauer. 2003. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113: 61-71.   DOI   ScienceOn
16 Wang, Y. 2002. The function of OmpA in Escherichia coli. Biochem. Biophys. Res. Commun. 292: 396-401.   DOI   ScienceOn
17 Wu, H. C. 1996. Biosynthesis of lipoproteins in Escherichia coli and Salmonella, pp. 262-282. In F. C. Neidhardt, R. Curtiss III, J. L.Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.). Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology, 2nd Ed. ASM Press, Washington, DC.
18 Wu, T., J. Malinverni, N. Ruiz, S. Kim, T. J. Silhavy, and D. Kahne. 2005. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121: 235-245.   DOI   ScienceOn
19 Xia, X. X., M. J. Han, S. Y. Lee, and J. S. Yoo. 2008. Comparison of the extracellular proteomes of Escherichia coli B and K-12 strains during high cell density cultivation. Proteomics 8: 2089-2103.   DOI   ScienceOn
20 Xu, C., H. Ren, S. Wang, and X. Peng. 2004. Proteomic analysis of salt-sensitive outer membrane proteins of Vibrio parahaemolyticus. Res. Microbiol. 155: 835-842.   DOI   ScienceOn
21 Xu, C., S. Wang, H. Ren, X. Lin, L. Wu, and X. Peng. 2005. Proteomic analysis on the expression of outer membrane proteins of Vibrio alginolyticus at different sodium concentrations. Proteomics 5: 3142-3152.   DOI   ScienceOn
22 Zhang, Y. M. and C. O. Rock. 2008. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 6: 222-233.   DOI   ScienceOn
23 Borgstrom, B. 1974. Bile salts - their physiological functions in the gastrointestinal tract. Acta Med. Scand. 196: 1-10.
24 Bos, M. P., V. Robert, and J. Tommassen. 2007. Biogenesis of the Gram-negative bacterial outer membrane. Annu. Rev. Microbiol. 61: 191-214.   DOI   ScienceOn
25 Brown, J. L., T. Ross, T. A. McMeekin, and P. D. Nichols. 1997. Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int. J. Food Microbiol. 37: 163-173.   DOI   ScienceOn
26 Cronan, J. E. Jr. 1968. Phospholipid alterations during growth of Escherichia coli. J. Bacteriol. 95: 2054-2061.
27 Doerrler, W. T. and C. R. Raetz. 2005. Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant. J. Biol. Chem. 280: 27679-27687.   DOI   ScienceOn
28 Gardy, J. L., M. R. Laird, F. Chen, S. Rey, C. J. Walsh, M. Ester, and F. S. Brinkman. 2005. PSORTb v.2.0: Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21: 617-623.   DOI   ScienceOn
29 Han, M. J., H. Yun, J. W. Lee, Y. H. Lee, S. Y. Lee, J. S. Yoo, et al. 2011. Genome-wide identification of the subcellular localization of the Escherichia coli B proteome using experimental and computational methods. Proteomics 11: 1213-1227.   DOI   ScienceOn
30 Han, M. J., J. W. Lee, and S. Y. Lee. 2005. Enhanced proteome profiling by inhibiting proteolysis with small heat shock proteins. J. Proteome Res. 4: 2429-2434.   DOI   ScienceOn
31 Harder, K. J., H. Nikaido, and M. Matsuhashi. 1981. Mutants of Escherichia coli that are resistant to certain ${\beta}$-lactam compounds lack the ompF porin. Antimicrob. Agents Chemother. 20: 549-552.   DOI   ScienceOn
32 Hasegawa, Y., H. Yamada, and S. Mizushima. 1976. Interactions of outer membrane proteins O-8 and O-9 with peptidoglycan sacculus of Escherichia coli K-12. J. Biochem. 80: 1401-1409.   DOI
33 Hayes, E. T., J. C. Wilks, P. Sanfilippo, E. Yohannes, D. P. Tate, B. D. Jones, et al. 2006. Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol. 6: 89.   DOI   ScienceOn
34 Herrera, G., A. Martinez, M. Blanco, and J. E. O'Connor. 2002. Assessment of Escherichia coli B with enhanced permeability to fluorochromes for flow cytometric assays of bacterial cell function. Cytometry 49: 62-69.   DOI   ScienceOn
35 Ho, E. M., H. W. Chang, S. I. Kim, H. Y. Kahng, and K. H. Oh. 2004. Analysis of TNT (2,4,6-trinitrotoluene)-inducible cellular responses and stress shock proteome in Stenotrophomonas sp. OK-5. Curr. Microbiol. 49: 346-352.   DOI   ScienceOn
36 Archer, C. T., J. F. Kim, H. Jeong, J. H. Park, C. E. Vickers, S. Y. Lee, and L. K. Nielsen. 2011. The genome sequence of E. coli W (ATCC 9637): Comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 12: 9.   DOI   ScienceOn
37 Pilsl, H., D. Smajs, and V. Braun. 1999. Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane. J. Bacteriol. 181: 3578-3581.
38 Bagos, P. G., T. D. Liakopoulos, I. C. Spyropoulos, and S. J. Hamodrakas. 2004. PRED-TMBB: A Web server for predicting the topology of ${\beta}$-barrel outer membrane proteins. Nucleic Acids Res. 32: W400-W404.   DOI   ScienceOn
39 Nishino, K. and A. Yamaguchi. 2001. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 183: 5803-5812.   DOI   ScienceOn
40 Onufryk, C., M. L. Crouch, F. C. Fang, and C. A. Gross. 2005. Characterization of six lipoproteins in the ${\sigma}^E$ regulon. J. Bacteriol. 187: 4552-4561.   DOI   ScienceOn
41 Prasadarao, N. V., A. M. Blom, B. O. Villoutreix, and L. C. Linsangan. 2002. A novel interaction of outer membrane protein A with C4b binding protein mediates serum resistance of Escherichia coli K1. J. Immunol. 169: 6352-6360.   DOI
42 Rhodius, V. A., W. C. Suh, G. Nonaka, J. West, and C. A. Gross, 2006. Conserved and variable functions of the ${\sigma}^E$ stress response in related genomes. PLoS Biol. 4: e2.   DOI   ScienceOn
43 Schneider, D., E. Duperchy, J. Depeyrot, E. Coursange, R. Lenski, and M. Blot. 2002. Genomic comparisons among Escherichia coli strains B, K-12, and O157:H7 using IS elements as molecular markers. BMC Microbiol. 2: 18.   DOI
44 Sonntag, I., H. Schwarz, Y. Hirota, and U. Henning. 1978. Cell envelope and shape of Escherichia coli: Multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J. Bacteriol. 136: 280-285.
45 Sugawara, E. and H. Nikaido. 1992. Pore-forming activity of OmpA protein of Escherichia coli. J. Biol. Chem. 267: 2507-2511.
46 Stancik, L. M., D. M. Stancik, B. Schmidt, D. M. Barnhart, Y. N. Yoncheva, and J. L. Slonczewski. 2002. pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J. Bacteriol. 184: 4246-4258.   DOI   ScienceOn
47 Stenberg, F., P. Chovanec, S. L. Maslen, C. V. Robinson, L. L. Ilag, G. von Heijne, and D. O. Daley. 2005. Protein complexes of the Escherichia coli cell envelope. J. Biol. Chem. 280: 34409-34419.   DOI   ScienceOn
48 Studier, F. W., P. Daegelen, R. E. Lenski, S. Maslov, and J. F. Kim. 2009. Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E. coli B and K-12 genomes. J. Mol. Biol. 394: 653-680.   DOI   ScienceOn
49 Sulavik, M. C., C. Houseweart, C. Cramer, N. Jiwani, N. Murgolo, J. Greene, et al. 2001. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 45: 1126-1136.   DOI   ScienceOn
50 Tokuda, H. and S. Matsuyama. 2004. Sorting of lipoproteins to the outer membrane in E. coli. Biochim. Biophys. Acta 1694: IN1-9.   DOI
51 van Beilen, J. B., S. Panke, S. Lucchini, A. G. Franchini, M. Rothlisberger, and B. Witholt. 2001. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: Evolution and regulation of the alk genes. Microbiology 147: 1621-1630.   DOI
52 Huang, C. Z., X. M. Lin, L. N. Wu, D. F. Zhang, D. Liu, S. Y. Wang, and X. X. Peng. 2006. Systematic identification of the subproteome of Escherichia coli cell envelope reveals the interaction network of membrane proteins and membrane-associated peripheral proteins. J. Proteome Res. 5: 3268-3276.   DOI   ScienceOn