• Title/Summary/Keyword: cold shock protein

Search Result 45, Processing Time 0.027 seconds

Recombinant Expression, Isotope Labeling, and Purification of Cold shock Protein from Colwellia psychrerythraea for NMR Study

  • Moon, Chang-Hun;Jeong, Ki-Woong;Kim, Hak-Jun;Heo, Yong-Seok;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2647-2650
    • /
    • 2009
  • Cold shock proteins (Csps) are a subgroup of the cold-induced proteins on reduction of the growth temperature below the physiological temperature. They preferentially bind to single-stranded nucleic acids to translational regulation via RNA chaperoning. Csp plays important role in cold adaptations for the psychrophilic microorganism. Recently, Cold shock protein from psychrophilic bacteria, Colwellia psychrerythraea (CpCsp) has been identified. Three dimensional structures of a number of Csps from various microorganisms have been solved by NMR spectroscopy or X-ray crystallography, but structures of psychrophilic Csps were not studied yet. Therefore, cloning and purification protocols for further structural study of psychrophilic Csp have been optimized in this study. CpCsp was expressed in E. coli with pET-11a vector system and purified by ion exchange, size exclusion, and reverse phase chromatography. Expression and purification of CpCsp in M9 minimal media was carried out and $^{15}N$-labeled proteins with high purity over 90% was obtained. Further study will be carried out to investigate the tertiary structure and dynamics of CpCsp.

The Effect of Cold-adaptation on Stress Responses and Identification of a Cold Shock Gene, capA in Bradyrhizobium japonicum (Bradyrhizobium japonicum의 저온 전처리에 의한 환경스트레스 내성 증진에 대한 연구)

  • 유지철;노재상;오은택;소재성
    • Korean Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.45-49
    • /
    • 2002
  • Bradyrhizobium japonicum is a soil bacterium with a unique ability to infect the roots of leguminous plants and establish a nitrogen-fixing symbiosis, which has been used as a microbial manure. In this study, we examined the stress response after pretreatment of cells with cold temperature. When pre-treated with cold temperature ($4^{\circ}C$) for 16 hr, B. japonicum increased the viability in subsequent stress-conditions such as alcohol, $H_2O_2$, heat, and dehydration. For cold adpatation, cultured B. japonicum was exposed to $4^{\circ}C$. Upon subsequent exposure to various conditions, the number of adapted cells pretreated by cold adaptation was 10-1000 fold higher than that of non-adaptated ones. It appeared de novo protein synthesis occurred during adaptation, because a protein synthesis inhibitor, chloramphenicol abolished the increased stress tolerance. By using a degenerate PCR primer set, a csp homolog was amplified from B. japonicum genome and sequenced. The deduced partial amino acid sequence of the putative Csp (Cold shock protein) shares a significant similarity with known Csp proteins of other bacteria.

Cold Shock Response of an Antarctic Streptomyces Strain Showing Demulsifying Ability

  • Lee Yoo Kyung;Kim Hyo Won;Hyun Kwang Soon;Lee Hong Kum
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.138-145
    • /
    • 2001
  • The hydrophobic spores of Streptomyces sp. AA8321 isolated from the Antarctic coast displayed demulsification ability. The aerial spores demulsified an emulsion of kerosene/$0.2\%$ Triton X-100 (2:1, v/v) to $50\%$ and $95\%$ within 1 min contact at the concentrations of $5.0{\times}10^7$ and $1.0{\times}10^8$ spores/ml, respectively. A cold shock protein (csp) gene was cloned from the hydrophobic spore- producing Streptomyces sp. AA8321 using PCR. It encoded a low molecular protein with 68 amino acids showing very low homology with previously reported csp genes. Only the sequence of the first six amino acids was just the same and yet others were different. RNA blot analysis indicated that the csp gene was induced by cold shock, i.e., transferring from $30^{\circ}C$ to $10^{\circ}C$, and this cold shock response proposed that the isolated gene be a new type of csp gene.

  • PDF

A Study on the Protein Productivity of the Promoters for Cold Inducible Genes in Escherichia coli (대장균 저온 유도성 유전자 Promoter의 단백질 생산성에 관한 연구)

  • Kim, So-Yeon;Kim, Su-Hyun;Heo, Mi-Ae;Lee, Sun-Gu
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.461-465
    • /
    • 2006
  • We investigated the protein productivity of the promoters for genes showing prolonged induction upon cold shock in Escherichia coli. Six low temperature inducible genes (frdA, glpB, hypB, katG, nupG, ompT) were selected based on the previously reported cDNA microarray based global transcription profiling of Escherichia coli Kl2 in response to cold shock. Their promoter regions were isolated from the genomic DNA of E. coli JM109 and expression levels induced by the promoters were examined by using green fluorescence protein (GFP) as a reporter at $15^{\circ}C$ and $37^{\circ}C$. Among the six promoters, the promoter for nupG showed the highest and prolonged expression at both temperatures and the cold inducibility of nupG promoter was not observed.

Purification and Structural Characterization of Cold Shock Protein from Listeria monocytogenes

  • Lee, Ju-Ho;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2508-2512
    • /
    • 2012
  • Cold shock proteins (CSPs) are a family of proteins induced at low temperatures. CSPs bind to single-stranded nucleic acids through the ribonucleoprotein 1 and 2 (RNP 1 and 2) binding motifs. CSPs play an essential role in cold adaptation by regulating transcription and translation via molecular chaperones. The solution nuclear magnetic resonance (NMR) or X-ray crystal structures of several CSPs from various microorganisms have been determined, but structural characteristics of psychrophilic CSPs have not been studied. Therefore, we optimized the purification process to obtain highly pure Lm-Csp and determined the three-dimensional structure model of Lm-Csp by comparative homology modeling using MODELLER on the basis of the solution NMR structure of Bs-CspB. Lm-Csp consists of a ${\beta}$-barrel structure, which includes antiparallel ${\beta}$ strands (G4-N10, F15-I18, V26-H29, A46-D50, and P58-Q64). The template protein, Bs-CspB, shares a similar ${\beta}$ sheet structure and an identical chain fold to Lm-Csp. However, the sheets in Lm-Csp were much shorter than those of Bs-CspB. The Lm-Csp side chains, E2 and R20 form a salt bridge, thus, stabilizing the Lm-Csp structure. To evaluate the contribution of this ionic interaction as well as that of the hydrophobic patch on protein stability, we investigated the secondary structures of wild type and mutant protein (W8, F15, and R20) of Lm-Csp using circular dichroism (CD) spectroscopy. The results showed that solvent-exposed aromatic side chains as well as residues participating in ionic interactions are very important for structural stability. Further studies on the three-dimensional structure and dynamics of Lm-Csp using NMR spectroscopy are required.

Pilot-scale Production of the Antifreeze Protein from Antarctic Bacterium Flavobacterium frigoris PS1 by Recombinant Escherichia coli with a Cold Shock Induction System (저온 유도 시스템을 가진 재조합 대장균을 이용한 남극 세균 Flavobacterium frigoris PS1 유래 결빙방지단백질의 Pilot-scale 생산)

  • Kim, Eun Jae;Lee, Jun Hyuck;Lee, Sung Gu;Han, Se Jong
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.345-349
    • /
    • 2015
  • Antifreeze proteins (AFP) inhibit growth and recrystallization of ice, and permit organisms to survive in cold environments. The AFP from an Antarctic bacterium, Flavobacterium frigoris PS1, FfIBP (Flavobacterium frigoris icebinding protein), was produced in E. coli using a cold shock induction system. The culture temperature was shifted from $37^{\circ}C$ to $15^{\circ}C$ and a 20 L culture scale was used. The final weights of dried cell and FfIBP were estimated to be 126 g and 8.4 g, respectively. The thermal hysteresis (TH) activity ($1.53^{\circ}C$) of the produced FfIBP was 3.6-fold higher than that of the LeIBP (Leucosporidium ice-binding protein) produced in Picha. The current study demonstrates that large-scale production of FfIBP was successful and the result could be extended to further application studies using recombinant AFPs.

Effect of Cold Adaptation on the Improved Viability of Lactobacillus crispatus KLB46 (Lactobacillus crispatus KLB46의 생균제제화를 위한 저온 전처리시 증지의 효과)

  • 김주현;이석용;장정은;김승철;윤현식;소재성
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.626-631
    • /
    • 2001
  • Lactobacilli have been considered to play important roles in the health of human vagina. They secrete inhibitory substances to prevent vaginal infection by pathogenic organisms. In a previous study, we have isolated several lactobacilli from Korean woman and one of them (KLB46) was selected and indentified as Lactobacillu crispatus which showed high antimicrobial activity. In this study. cold adaptation prior to subsequent stresses exposure was examined whether L. crispatus KLB46 maintain the viability better than the non-adapted calls under stresses. For pharmaceutical formulation, the lyophilization process is required where stresses such as freezing/thawing and dehydration are routinely applied. Formulated L. crispatus KLB46 can be used for ecological treatment of bacterial vaginosis. The response of cold-adapted cells to other environmental stresses such as acid, heat, ethanol, NaCl, and H$_2$O$_2$ was also examined. The results showed that cold-adapted cells maintained higher survival rate compared with the non-adapted cells (freezing-thawing. 3-folds; dehydration: 3-folds; acid, 3-folds; heat, 10-folds). However, we did net observe any positive effect of cold adaptation on other stresses such as ethanol, NaCl and H$_2$O$_2$. When chloramphenicol was added during cold adaptation, adaptation effect was abolished. This confirms that de novo protein synthesis is necessary during the adaptation process. Moreover, we have identified cold shock protein homolog that codes for a major cold shock protein by PCR amplification using degenerate primers.

  • PDF

Analysis of heat, cold or salinity stress-inducible genes in the Pacific abalone, Haliotis discus hannai, by suppression subtractive hybridization

  • Nam, Bo-Hye;Park, Eun-Mi;Kim, Young-Ok;Kim, Dong-Gyun;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul Min
    • The Korean Journal of Malacology
    • /
    • v.29 no.3
    • /
    • pp.181-187
    • /
    • 2013
  • In order to investigate environmental stress inducible genes in abalone, we analyzed differentially expressed transcripts from a Pacific abalone, Haliotis discus hannai, after exposure to heat-, cold- or hyposalinity-shock by suppression subtractive hybridization (SSH) method. 1,074 unique sequences from SSH libraries were composed to 115 clusters and 986 singletons, the overall redundancy of the library was 16.3%. From the BLAST search, of the 1,316 ESTs, 998 ESTs (75.8%) were identified as known genes, but 318 clones (24.2%) did not match to any previously described genes. From the comparison results of ESTs pattern of three SSH cDNA libraries, the most abundant EST was different in each SSH library: small heat shock protein p26 (sHSP26) in heat-shock, trypsinogen 2 in cold-shock, and actin in hyposalinity SSH cDNA library. Based on sequence similarities, several response-to-stress genes such as heat shock proteins (HSPs) were identified commonly from the abalone SSH libraries. HSP70 gene was induced by environmental stress regardless of temperature-shock or salinity-stress, while the increase of sHSP26 mRNA expression was not detected in cold-shock but in heat-shock condition. These results suggest that the suppression subtractive hybridization method is an efficient way to isolate differentially expressed gene from the invertebrate environmental stress-response transcriptome.

Cold Shock Response and Low Temperature Stable Transcript of DEAD-box RNA Helicase in Bacillus subtilis (DEAD-box RNA Helicase 유전자가 결핍된 Bacillus subtilis의 저온 충격 반응성과 저온 안정성 전사물)

  • Oh, Eun-Ha;Lee, Sang-Soo
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.289-294
    • /
    • 2011
  • We investigated the cold shock sensitivity of DEAD-box RNA helicase gene deleted strains of in Bacillus subtilis CU1065. To understand cold shock effects, cells were cultivated at $37^{\circ}C$ to log phase ($O.D_{600}$=0.5-0.6) and then temperature was shifted to $15^{\circ}C$. Cold shock slow down the growth rate of wild type and deleted strains of DEAD-box RNA helicase gene (ydbR, yfmL, yqfR, deaD). The growth rate of ydbR deleted strain is 5 times severely reduced compared to that of wild type strain (CU1065). But the growth rate of other three (yfmL, yqfR, deaD) deleted strains is nearly equal to the growth rate of wild type. Compared to $37^{\circ}C$, the amount of ydbR and yqfR mRNA transcripts are increased at the growth temperature of $15^{\circ}C$. On the other hands the mRNA transcripts of yfmL and deaD are not changed at both conditions of $37^{\circ}C$ and $15^{\circ}C$. Upon cold shock treatment ydbR mRNA transcript is clearly increased. After treatment of rifampicin (bacteria transcription inhibitor) the amount of ydbR mRNA was measured. Temperature shift from $37^{\circ}C$ to $15^{\circ}C$ and rifampicin treatment showed slowly decay of ydbR mRNA. But at $37^{\circ}C$ and rifampicin treatment ydbR mRNA is rapidly reduced. These results showed that cold shock induction of ydbR mRNA resulted from the stability of ydbR mRNA and not from the transcription induction of ydbR. In relation to these results, we found the cold box element of csp (cold shock protein gene) in 5' untranslated region of ydbR gene. Cold shock induction of ydbR is caused by the stability of ydbR mRNA like the stability of csp mRNA.

Identification of csp Homolog in Bradyrhizobium japonicum

  • No, Jae-Sang;Yu, Ji-Cheol;So, Jae-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.602-605
    • /
    • 2001
  • Low-temperature adaptation and protection for environmental stresses were studied in the gram-negative soil bacterium Bradyrhizobium japonicum 61A101c. B. japonicum was more resistant to alcohol, $H_2O_2$, heat and freezing following a pretreatment at $4^{\circ}C$, resulting in approximately 10 to 1,000 folds increased survival compared to mid-exponential-phase cells grown at an optimal temperature at $28^{\circ}C$. This phenomena relate to the cold shock protein expressed when cells are exposed to a downshift in temperature. To confirm the presence of cold shock protein genes in B. japonicum, a PCR strategy was employed using a degenerate primer set, which successfully amplified a putative csp gene fragment. Sequence analysis of the PCR product(200bp) revealed csp-like sequences that were up to 96% identical to csp gene of S. typhimurium.

  • PDF