DOI QR코드

DOI QR Code

Pilot-scale Production of the Antifreeze Protein from Antarctic Bacterium Flavobacterium frigoris PS1 by Recombinant Escherichia coli with a Cold Shock Induction System

저온 유도 시스템을 가진 재조합 대장균을 이용한 남극 세균 Flavobacterium frigoris PS1 유래 결빙방지단백질의 Pilot-scale 생산

  • Kim, Eun Jae (Department of Polar Bioconvergence Research, Division of Life Sciences, Korea Polar Research Institute, KIOST) ;
  • Lee, Jun Hyuck (Department of Polar Bioconvergence Research, Division of Life Sciences, Korea Polar Research Institute, KIOST) ;
  • Lee, Sung Gu (Department of Polar Bioconvergence Research, Division of Life Sciences, Korea Polar Research Institute, KIOST) ;
  • Han, Se Jong (Department of Polar Bioconvergence Research, Division of Life Sciences, Korea Polar Research Institute, KIOST)
  • 김은재 (한국해양과학기술원 부설 극지연구소 극지생명과학연구부 융합 생명과학연구실) ;
  • 이준혁 (한국해양과학기술원 부설 극지연구소 극지생명과학연구부 융합 생명과학연구실) ;
  • 이성구 (한국해양과학기술원 부설 극지연구소 극지생명과학연구부 융합 생명과학연구실) ;
  • 한세종 (한국해양과학기술원 부설 극지연구소 극지생명과학연구부 융합 생명과학연구실)
  • Received : 2015.10.06
  • Accepted : 2015.11.26
  • Published : 2015.12.27

Abstract

Antifreeze proteins (AFP) inhibit growth and recrystallization of ice, and permit organisms to survive in cold environments. The AFP from an Antarctic bacterium, Flavobacterium frigoris PS1, FfIBP (Flavobacterium frigoris icebinding protein), was produced in E. coli using a cold shock induction system. The culture temperature was shifted from $37^{\circ}C$ to $15^{\circ}C$ and a 20 L culture scale was used. The final weights of dried cell and FfIBP were estimated to be 126 g and 8.4 g, respectively. The thermal hysteresis (TH) activity ($1.53^{\circ}C$) of the produced FfIBP was 3.6-fold higher than that of the LeIBP (Leucosporidium ice-binding protein) produced in Picha. The current study demonstrates that large-scale production of FfIBP was successful and the result could be extended to further application studies using recombinant AFPs.

Keywords

References

  1. Jia, Z. and P. L. Davies (2002) Antifreeze proteins: An unusual receptor-ligand interaction. Trends Biochem. Sci. 27: 101-106. https://doi.org/10.1016/S0968-0004(01)02028-X
  2. Venketesh, S. and C. Dayananda (2008) Properties, potentials, and prospects of antifreeze proteins. Crit. Rev. Biotechnol. 28: 57-82. https://doi.org/10.1080/07388550801891152
  3. Barrett, J. (2001) Thermal hysteresis proteins. Int. J. Biochem. Cell Biol. 33: 105-117. https://doi.org/10.1016/S1357-2725(00)00083-2
  4. Ben, R. N. (2001) Antifreeze glycoproteins-preventing the growth of ice. Chembiochem. 2: 161-166. https://doi.org/10.1002/1439-7633(20010302)2:3<161::AID-CBIC161>3.0.CO;2-F
  5. Bouvet, V. and R. N. Ben (2003) Antifreeze glycoproteins: structure, conformation, and biological applications. Cell Biochem. Biophys. 39: 133-144. https://doi.org/10.1385/CBB:39:2:133
  6. Fuller, B. J. (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Lett. 25: 375-388.
  7. Harding, M. M., P. I. Anderberg, and A. D. Haymet (2003) 'Antifreeze' glycoproteins from polar fish. Eur. J. Biochem. 270: 1381- 1392. https://doi.org/10.1046/j.1432-1033.2003.03488.x
  8. Lee, J. K., K. S. Park, S. Park, H. Park, Y. H. Song, S. H. Kang, and H. J. Kim (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiol. 60: 222-228. https://doi.org/10.1016/j.cryobiol.2010.01.002
  9. Park, K. S., H. Do, J. H. Lee, S. I. Park, E. Kim, S. J. Kim, S. H. Kang and H. J. Kim (2012) Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Cryobiol. 64: 286-296. https://doi.org/10.1016/j.cryobiol.2012.02.014
  10. Lee, J. H., A. K. Park, H. Do, K. S. Park, S. H. Moh, Y. M. Chi, and H. J. Kim (2012) Structural basis for antifreeze activity of icebinding protein from arctic yeast. J. Biol. Chem. 287: 11460-11468. https://doi.org/10.1074/jbc.M111.331835
  11. Lee, J. H., S. G. Lee, H. Do, J. C. Park, E. Kim, Y. H. Choe, S. J. Han, and H. J. Kim (2013) Optimization of the pilot-scale produc-tion of an ice-binding protein by fed-batch culture of Pichia pastoris. Appl. Microbiol. Biotechnol. 97: 3383-3393. https://doi.org/10.1007/s00253-012-4594-y
  12. Do, H., J. H. Lee, S. G. Lee, and H. J. Kim (2012) Crystallization and preliminary X-ray crystallographic analysis of an ice-binding protein (FfIBP) from Flavobacterium frigoris PS1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68: 806-809. https://doi.org/10.1107/S1744309112020465
  13. Kim, E. J., H. Do, J. H. Lee, S. G. Lee, H. J. Kim, and S. J. Han (2014) Production of antifreeze protein from Antarctic bacterium Flavobacterium frigoris PS1 by using fed-batch culture of recombinant Pichia pastoris. Kor. Soc. Biotechnol. Bioeng. J. 29: 303-306.
  14. Han, S. J., S. Cho, K. Lowehhaupt, S. Y. Park, S. J. Sim and Y. G. Kim (2013) Recombinant tagging system using ribosomal frameshifting to monitor protein expression. Biotechnol. Bioeng. 110: 898-904. https://doi.org/10.1002/bit.24740

Cited by

  1. Pilot-scale Production of Recombinant LeIBP from Arctic Yeast Glaciozyma sp. by Escherichia coli vol.32, pp.4, 2017, https://doi.org/10.7841/ksbbj.2017.32.4.300
  2. Effects of ice-binding protein from Leucosporidium on the cryopreservation of boar sperm* vol.33, pp.3, 2018, https://doi.org/10.12750/JET.2018.33.3.185