Browse > Article
http://dx.doi.org/10.7841/ksbbj.2015.30.6.345

Pilot-scale Production of the Antifreeze Protein from Antarctic Bacterium Flavobacterium frigoris PS1 by Recombinant Escherichia coli with a Cold Shock Induction System  

Kim, Eun Jae (Department of Polar Bioconvergence Research, Division of Life Sciences, Korea Polar Research Institute, KIOST)
Lee, Jun Hyuck (Department of Polar Bioconvergence Research, Division of Life Sciences, Korea Polar Research Institute, KIOST)
Lee, Sung Gu (Department of Polar Bioconvergence Research, Division of Life Sciences, Korea Polar Research Institute, KIOST)
Han, Se Jong (Department of Polar Bioconvergence Research, Division of Life Sciences, Korea Polar Research Institute, KIOST)
Publication Information
KSBB Journal / v.30, no.6, 2015 , pp. 345-349 More about this Journal
Abstract
Antifreeze proteins (AFP) inhibit growth and recrystallization of ice, and permit organisms to survive in cold environments. The AFP from an Antarctic bacterium, Flavobacterium frigoris PS1, FfIBP (Flavobacterium frigoris icebinding protein), was produced in E. coli using a cold shock induction system. The culture temperature was shifted from $37^{\circ}C$ to $15^{\circ}C$ and a 20 L culture scale was used. The final weights of dried cell and FfIBP were estimated to be 126 g and 8.4 g, respectively. The thermal hysteresis (TH) activity ($1.53^{\circ}C$) of the produced FfIBP was 3.6-fold higher than that of the LeIBP (Leucosporidium ice-binding protein) produced in Picha. The current study demonstrates that large-scale production of FfIBP was successful and the result could be extended to further application studies using recombinant AFPs.
Keywords
Antarctica; Antifreeze protein; Cold shock induction; Flavobacterium frigoris; Pilot scale fermentation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jia, Z. and P. L. Davies (2002) Antifreeze proteins: An unusual receptor-ligand interaction. Trends Biochem. Sci. 27: 101-106.   DOI
2 Venketesh, S. and C. Dayananda (2008) Properties, potentials, and prospects of antifreeze proteins. Crit. Rev. Biotechnol. 28: 57-82.   DOI
3 Barrett, J. (2001) Thermal hysteresis proteins. Int. J. Biochem. Cell Biol. 33: 105-117.   DOI
4 Ben, R. N. (2001) Antifreeze glycoproteins-preventing the growth of ice. Chembiochem. 2: 161-166.   DOI
5 Bouvet, V. and R. N. Ben (2003) Antifreeze glycoproteins: structure, conformation, and biological applications. Cell Biochem. Biophys. 39: 133-144.   DOI
6 Fuller, B. J. (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Lett. 25: 375-388.
7 Harding, M. M., P. I. Anderberg, and A. D. Haymet (2003) 'Antifreeze' glycoproteins from polar fish. Eur. J. Biochem. 270: 1381- 1392.   DOI
8 Lee, J. K., K. S. Park, S. Park, H. Park, Y. H. Song, S. H. Kang, and H. J. Kim (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiol. 60: 222-228.   DOI
9 Park, K. S., H. Do, J. H. Lee, S. I. Park, E. Kim, S. J. Kim, S. H. Kang and H. J. Kim (2012) Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Cryobiol. 64: 286-296.   DOI
10 Lee, J. H., A. K. Park, H. Do, K. S. Park, S. H. Moh, Y. M. Chi, and H. J. Kim (2012) Structural basis for antifreeze activity of icebinding protein from arctic yeast. J. Biol. Chem. 287: 11460-11468.   DOI
11 Lee, J. H., S. G. Lee, H. Do, J. C. Park, E. Kim, Y. H. Choe, S. J. Han, and H. J. Kim (2013) Optimization of the pilot-scale produc-tion of an ice-binding protein by fed-batch culture of Pichia pastoris. Appl. Microbiol. Biotechnol. 97: 3383-3393.   DOI
12 Do, H., J. H. Lee, S. G. Lee, and H. J. Kim (2012) Crystallization and preliminary X-ray crystallographic analysis of an ice-binding protein (FfIBP) from Flavobacterium frigoris PS1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68: 806-809.   DOI
13 Kim, E. J., H. Do, J. H. Lee, S. G. Lee, H. J. Kim, and S. J. Han (2014) Production of antifreeze protein from Antarctic bacterium Flavobacterium frigoris PS1 by using fed-batch culture of recombinant Pichia pastoris. Kor. Soc. Biotechnol. Bioeng. J. 29: 303-306.
14 Han, S. J., S. Cho, K. Lowehhaupt, S. Y. Park, S. J. Sim and Y. G. Kim (2013) Recombinant tagging system using ribosomal frameshifting to monitor protein expression. Biotechnol. Bioeng. 110: 898-904.   DOI