The Effect of Cold-adaptation on Stress Responses and Identification of a Cold Shock Gene, capA in Bradyrhizobium japonicum

Bradyrhizobium japonicum의 저온 전처리에 의한 환경스트레스 내성 증진에 대한 연구

  • 유지철 (인하대학교 공과대학 생물공학과, 초정밀 생물분리연구센터) ;
  • 노재상 (인하대학교 공과대학 생물공학과, 초정밀 생물분리연구센터) ;
  • 오은택 (인하대학교 공과대학 생물공학과, 초정밀 생물분리연구센터) ;
  • 소재성 (인하대학교 공과대학 생물공학과, 초정밀 생물분리연구센터)
  • Published : 2002.03.01

Abstract

Bradyrhizobium japonicum is a soil bacterium with a unique ability to infect the roots of leguminous plants and establish a nitrogen-fixing symbiosis, which has been used as a microbial manure. In this study, we examined the stress response after pretreatment of cells with cold temperature. When pre-treated with cold temperature ($4^{\circ}C$) for 16 hr, B. japonicum increased the viability in subsequent stress-conditions such as alcohol, $H_2O_2$, heat, and dehydration. For cold adpatation, cultured B. japonicum was exposed to $4^{\circ}C$. Upon subsequent exposure to various conditions, the number of adapted cells pretreated by cold adaptation was 10-1000 fold higher than that of non-adaptated ones. It appeared de novo protein synthesis occurred during adaptation, because a protein synthesis inhibitor, chloramphenicol abolished the increased stress tolerance. By using a degenerate PCR primer set, a csp homolog was amplified from B. japonicum genome and sequenced. The deduced partial amino acid sequence of the putative Csp (Cold shock protein) shares a significant similarity with known Csp proteins of other bacteria.

Bradyrhizobium japonicum 은 콩과 식물의 뿌리에 감염하여 뿌리흑을 형성 질소를 고정하는 독특한 능력을 갖는 토양 세균이며 미생물 비료제로 사용되고 있다. 본 연구에서는 저온에서 전처리한 B . japonicum 균주를 여러 가지 환경스트레스 조건에 노출하였을 때 생균수의 변화를 확인하였다. 저온 전처리는 16시간 동안 $4^{\circ}C$의 조건을 유지했다. 다양한 스트레스(알콜, 과산화수소, 고온, 건조)에 노출하였을 때, 저온 전처리한 것이 그렇지 않는 것보다 10~1,000배 정도 높은 생균수를 유지하였다. 이러한 내성중진 현상에 전처리 동안 새로운 단백질 합성이 수반되는 것을 단백질 합성 저해제 인 chloramphenicol을 전처리 과정에 포함하여 확인하였다. 저온 스트레스 내성에 관여하는 유전자를 B. japonicum genome 으로부터 중폭하였고 염기서열 분석을 실시하였다. 실험에서 확인된 B . japonicum의 CSP (Cold shock protein) 단백질의 부분적 아미노산 서열은 이미 확인된 다른 균주의 Csp 단백질과 유사함을 확인하였다.

Keywords

References

  1. Appl. Environ. Microbiol. v.47 Preservation of Rhizobium viability and symbiotic infectivity by suspension in water Crist, D.K;R. Wyza;K.K. Mills;W.D. Bauer;W.R. Evans
  2. FEMS Microbiol. Ecol. v.32 Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp. Drouin, P.;D. Prevost;H. Antoun
  3. FEMS Microbiol. Lett. v.178 Cloning of two cold shock genes, cspA and cspG, from the deep-sea psychrohilic bacterium Shewanella biolacea strain DSS12 Fujii, S.;K. Nakasone;K. Horikoshi https://doi.org/10.1111/j.1574-6968.1999.tb13767.x
  4. Proc. Natl. Acad. USA. v.87 Major cold shock protein of Esherichia coli Goldstein, J.S. Pollitt;M. Inouye https://doi.org/10.1073/pnas.87.1.283
  5. J. Bacteriol. v.178 Cold shock stress-induced proteins in Bacillus subtilis Graumann, P.;K. Schroder;R. Schmid;M.A. Marahiel https://doi.org/10.1128/jb.178.15.4611-4619.1996
  6. Appl. Environ. Microbiol. v.60 Starvation-induced stress resistance Lactococcus lactis subsp. lactis IL 1403 Hartke, A.;S. Bouche;X. Gansel;P. Boutibonnes;Y. Auffray
  7. Antonie van Leeuwenhoek v.77 Adaptive response to cold temperatures and characterization of cspA in Salmonella typhimurium LT2 Horton, A. J.;K.M. Hak;R.J. Steffan;J.W. Foster;A. K. Bej https://doi.org/10.1023/A:1002055719798
  8. Curr. Microbiol. v.28 Temperature-dependent survival of isolates of Thiobacillus ferrooxidans Hubert, W.A.;G.D. Ferroni;L.G. Leuduc https://doi.org/10.1007/BF01571062
  9. Curr. Microbiol. v.35 Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance Kim, W.S.;N.W. Dunn https://doi.org/10.1007/s002849900212
  10. Cryobiol. v.37 Effect of cold shock on protein synthesis and on cryotolerance of cells frozen for long periods in Lactococcus lactis Kim, W.W.;N. Khunajkr;N.W. Dunn https://doi.org/10.1006/cryo.1998.2104
  11. Cryobiol. v.32 Cryotolerance and cold adaptation in Lactococcus lactis subsp. lactis IL1403 Panoff, J.M.;B.T. Vongs;J.M. Laplace;A. Hartke;P. Boutibonnes;W. Auffray https://doi.org/10.1006/cryo.1995.1053
  12. Cryobiol. v.36 Cold stress responses in mesophilic bacteria Panoff, J.M.;B. Thammavongs;M. Gueguen;P. Boutibonnes https://doi.org/10.1006/cryo.1997.2069
  13. Molecular Cloning: A Laboratory Manual(3rd ed.) Sambrook, J.;E.F. Laboratory;Fritsch;T. Maniatis
  14. Mol. Plant-Microbe Interact. v.4 A lipopolysaccharide mutant of Bradyrhizobium japonicum that nucouples polysaccharides from bacterial differentiation Stacey, G;J.-S. So;L.E. Roth;S.K.B. Lakshmi;R.W. Carlson https://doi.org/10.1094/MPMI-4-332
  15. Lett. Appl. Microbiol. v.23 Physiological response of Enterococcus faecalis JH2-2 to cold shock: growth at low temperatures and freezing/thawing challengs` Thammavongs, B.;D. Corroler;J.M. Panoff;Y. Auffray;P. Boutibonnes https://doi.org/10.1111/j.1472-765X.1996.tb01345.x
  16. Cryobiol. v.10 Preservation of bacteria by freezing at moderately low temperatures Wamasato, K.;D. Okuno;T. Ohtomo https://doi.org/10.1016/0011-2240(73)90075-8
  17. J. Bacteriol. v.87 Ribosomes as sensors of heat and cold shock in Escherichia coli Willimsky, S.P.A.;F.C. Neidhardt