최근 대량의 텍스트 분석을 위해 딥 러닝(Deep Learning)을 활용하는 연구들이 활발히 수행되고 있으며, 특히 대량의 텍스트에 대한 학습 결과를 특정 도메인 텍스트의 분석에 적용하는 사전 학습 언어 모델(Pre-trained Language Model)이 주목받고 있다. 다양한 사전 학습 언어 모델 중 BERT(Bidirectional Encoder Representations from Transformers) 기반 모델이 가장 널리 활용되고 있으며, 최근에는 BERT의 MLM(Masked Language Model)을 활용한 추가 사전 학습(Further Pre-training)을 통해 분석 성능을 향상시키기 위한 방안이 모색되고 있다. 하지만 전통적인 MLM 방식은 신조어와 같이 새로운 단어가 포함된 문장의 의미를 충분히 명확하게 파악하기 어렵다는 한계를 갖는다. 이에 본 연구에서는 기존의 MLM을 보완하여 신조어에 대해서만 집중적으로 마스킹을 수행하는 신조어 표적 마스킹(NTM: Newly Coined Words Target Masking)을 새롭게 제안한다. 제안 방법론을 적용하여 포털 'N'사의 영화 리뷰 약 70만 건을 분석한 결과, 제안하는 신조어 표적 마스킹이 기존의 무작위 마스킹에 비해 감성 분석의 정확도 측면에서 우수한 성능을 보였다.
온라인 게임에서의 언어폭력 문제는 매우 심각하지만 그에 대한 효과적인 정책이나 기술적인 방법은 부족한 상황이다. 온라인 게임 서비스 업체에서는 금칙어 리스트를 작성하여 Swear Filter를 이용한 고정된 형식의 문자열 검색 방식을 통해 문제를 해결하려고 하고 있으나 사용자들은 다양한 방법으로 욕설을 조합 또는 변형시켜 기존의 필터링을 회피하고 있다. 특히 한글은 욕설의 변형이 매우 쉬운 특성을 가지고 있다. 본 논문에는 한글에 기초한 변형 욕설을 효율적으로 탐색하여 걸러내는 알고리즘을 제시한다. 이 알고리즘의 주된 특징은 변형 욕설의 표준형 변환과 자소단위의 반 전체 정렬(semi-global alignment), 이다. 실험 결과 저자들이 다양한 인터넷 게임 환경에서 직접 수집한 다종의 욕설 단어들에 대하여 약 90%의 우수한 필터링 성능을 보였다.
정치적 사안에 대한 대중의 의견과 인식을 객관적으로 이해하기 위한 방법으로 텍스트 마이닝을 통한 빅데이터 분석을 수행할 수 있다. 기존 어휘 사전에 기반한 텍스트 마이닝 알고리즘은 신조어와 같이 사전에 수록되지 않은 어휘를 분석하는데 한계가 나타난다. SNS를 통해 나타나는 사용자들의 의견은 많은 경우 신조어와 비속어를 포함하는데, 이러한 어휘들을 효과적으로 분석하지 못한다면 정확한 대중의 인식과 의견을 파악하기 어렵게 된다. 본 논문은 정치 섹션의 뉴스 댓글로부터 정치적 의미성을 지니는 신조어와 비속어를 효과적으로 추출하는 방법을 제안하고, 추출한 신조어휘들의 의미와 맥락을 이해하기 위한 다양한 방법을 제시하였음.
본 연구는 2017년과 2018년 한·중 인물지칭 신어 197개를 조어방식에 따라 단일어, 합성어, 파생어, 축약어, 혼성어로 나누어 신어의 특성을 비교·분석했다. 인물지칭 신어 중 단일어의 경우 한국어는 영어와 중국어에서 차용된 단어들이었으며, 중국어에서는 단일어가 나타나지 않았다. 다음으로 합성어의 경우 중국어 합성법의 형식이 훨씬 다양하고 생성력이 한국보다 더 강하다는 특징이 있었다. 파생어의 경우 양국 접두파생어는 모두 많지 않다는 특징을 보였다. 한국어 접미파생어 중에서는 외래어나 고유어 접미사에 비해 한자어 접미사의 생산력이 강했다. 외래어 접미사는 한국어에서 중국어에 비해 보다 빈번하게 나타났다. 다음으로 축약어의 경우 한국어에 나타난 축약어 신어는 어두 음절의 생산력이 더 강한 반면 중국어의 축약어 신어에서는 비어두 음절어의 생산력이 더 강하다는 것을 알 수 있었다. 끝으로 혼성어의 경우 한국어의 혼성 형식이 중국어보다 훨씬 다양하게 나타났다. 본 연구는 중국인 한국어 학습자가 한국어 신어의 형성과정을 이해하는 데에 도움을 줄 수 있으며, 나아가 그들이 한국어 학습 과정에서 한국어 단어의 의미를 추측하는 능력을 함양하는 데에 이론적 단서를 제공한다는 점에서 의미가 있다.
이 논문에서는 고등학교 수학에서 사용되는 몇 몇 한자 용어에 대해 의미론적 탐색을 시도하고 있다. 한자 용어 중에는 일상어에서 차용한 것도 있고, 새롭게 만들어진 것도 있다. 일상어에서 차용한 용어의 의미성과 규약성의 정도는 상대적이다. 일상어에서 차용한 용어 중에는 그 수학적 의미가 일상적 의미와 다른 것이 있다. 일상적 의미를 알게 해주는 용례가 별로 없다면, 수학적 의미를 유추하는 것이 어렵다. 일상적 의미가 지나치게 우세하면 잘못된 이미지를 환기시켜줄 수 있다. 한편, 수학적 의미만을 가진 용어에 학생들이 친숙할 것으로 기대할 수는 없다. 한자 용어를 한글로 음독한 용어의 문제점을 해결하는 한 방법으로 제안된 것이 용어를 의미론적으로 탐색하는 것이다. 이 과정을 통해 한자 용어가 환기시켜주는 이미지를 한글 용어에 이식하고자 하는 것이다. 대부분의 한자 용어는 규약성이 강하다고 할 수 있기에 그 작업이 필요하다.
인터넷 환경의 급속하게 발전하면서 웹을 통하여 많은 학습 매체를 경험할 수 있다. 특히 영어 교육의 중요성이 강조되면서, 많은 영어 학습 관련 소프트웨어가 출시되었다. 그러나 기존 영어단어 교육용 시스템은 대부분 1명의 사용자가 게임을 진행하는 방식이며, 또한 'WIKIPEDIA'와 같은 신조어를 전혀 고려하지 못한다. 따라서 본 논문에서는 사용자에게 흥미와 즐거움을 유도하여 학습이 가능하도록 '스크레블'이라는 보드게임을 온라인으로 구현하였다. 제안하는 영어단어 교육용 게임시스템의 특징은 다음과 같다. 첫째, 제안하는 시스템은 인공지능을 바탕으로 한 가상의 사용자와 함께 단일 사용자 모드와 다중 사용자 모드를 모두 지원한다. 둘째, 제안하는 시스템은 NEVER 오픈 API사전을 이용하여 'WIKIPEDIA'와 같은 신조어에도 인식할 수 있다. 셋째, 매뉴얼 없이도 쉽게 게임을 즐길 수 있도록 사용자에게 익숙한 UI를 제공한다. 따라서 제안하는 시스템은 사용자에게 영어단어학습에 대한 흥미와 즐거움을 고취할 수 있다고 기대한다.
최근 딥러닝(Deep Learning)을 활용하여 텍스트로 표현된 단어나 문장의 의미를 파악하기 위한 다양한 연구가 활발하게 수행되고 있다. 하지만, 딥러닝을 통해 특정 도메인에서 사용되는 언어를 이해하기 위해서는 해당 도메인의 충분한 데이터에 대해 오랜 시간 학습이 수행되어야 한다는 어려움이 있다. 이러한 어려움을 극복하고자, 최근에는 방대한 양의 데이터에 대한 학습 결과인 사전 학습 언어 모델(Pre-trained Language Model)을 다른 도메인의 학습에 적용하는 방법이 딥러닝 연구에서 많이 사용되고 있다. 이들 접근법은 사전 학습을 통해 단어의 일반적인 의미를 학습하고, 이후에 단어가 특정 도메인에서 갖는 의미를 파악하기 위해 추가적인 학습을 진행한다. 추가 학습에는 일반적으로 대표적인 사전 학습 언어 모델인 BERT의 MLM(Masked Language Model)이 다시 사용되며, 마스크(Mask) 되지 않은 단어들의 의미로부터 마스크 된 단어의 의미를 추론하는 형태로 학습이 이루어진다. 따라서 사전 학습을 통해 의미가 파악되어 있는 단어들이 마스크 되지 않고, 신조어와 같이 의미가 알려져 있지 않은 단어들이 마스크 되는 비율이 높을수록 단어 의미의 학습이 정확하게 이루어지게 된다. 하지만 기존의 MLM은 무작위로 마스크 대상 단어를 선정하므로, 사전 학습을 통해 의미가 파악된 단어와 사전 학습에 포함되지 않아 의미 파악이 이루어지지 않은 신조어가 별도의 구분 없이 마스크에 포함된다. 따라서 본 연구에서는 사전 학습에 포함되지 않았던 신조어에 대해서만 집중적으로 마스킹(Masking)을 수행하는 방안을 제시한다. 이를 통해 신조어의 의미 학습이 더욱 정확하게 이루어질 수 있고, 궁극적으로 이러한 학습 결과를 활용한 후속 분석의 품질도 향상시킬 수 있을 것으로 기대한다. 영화 정보 제공 사이트인 N사로부터 영화 댓글 12만 건을 수집하여 실험을 수행한 결과, 제안하는 신조어 표적 마스킹(NTM: Newly Coined Words Target Masking)이 기존의 무작위 마스킹에 비해 감성 분석의 정확도 측면에서 우수한 성능을 보임을 확인하였다.
인터넷의 발달과 스마트폰의 보급으로 인하여 그에 따른 소셜 미디어 문화가 형성됨에 따라 PC통신부터 지금까지 소셜 미디어 신조어가 그 문화로 자리 잡아가고 있다. 소셜 미디어의 등장과 사람들의 가교역할을 해주는 스마트폰의 보급화로 신조어가 생기고 빈번하게 사용되고 있는 추세이다. 신조어의 사용은 다양한 문자 제한 메신저의 문제점을 해결하고 짧은 문장을 사용하여 데이터를 줄이는 등 많은 장점을 가지고 있다. 그러나 신조어에는 사전적인 의미가 없으므로 데이터 마이닝 기술이나 빅데이터와 같은 연구에서 사용되는 알고리즘의 성능 저하와 연구에 제약사항이 발생한다. 따라서 본 논문에서는 웹 크롤링을 통해 텍스트 데이터를 추출하고, 텍스트 마이닝과 오피니언 마이닝을 통해 의미부여 및 단어들에 대한 감정적 분류를 통한 문장의 오피니언 파악을 진행하고자 한다. 실험은 다음과 같이 3단계로 진행하였다. 첫째, 소셜 미디어에서 새로운 단어를 수집하여 수집된 단어는 긍정적이고 부정적인 학습을 받게 하였다. 둘째, 표준 문서를 사용하여 감정적 가치를 도출하고 검증하기 위해 TF-IDF를 사용하여 데이터의 감정적 가치를 측정하기 위해 명사 빈도수를 측정한다. 신조어와 마찬가지로 분류된 감정적 가치가 적용되어 감정이 표준 언어 문서로 분류되는지 확인하였다. 마지막으로, 새로 합성된 단어와 표준 감정적 가치의 조합을 사용하여 장비 기술의 비교분석을 수행하였다.
신문이나 블로그와 같은 실제 문서에서는 위키백과(Wikipedia)와 같은 기존에 없던 새로운 단어를 포함하고 있다. 그러나, 대부분의 정보 처리 기술은 시스템 개발 당시 확보한 자료를 바탕으로 사전을 구축하므로, 이러한 새로운 단어에 대해 신속하게 대처할 수 없다는 한계가 있다. 따라서 본 논문에서는 사전에 등록되어 있지 않은 한국어 미등록어를 자동으로 인식하는 모델을 제안한다. 제안하는 모델은 전문분석 기반 미등록명사 인식 단계, 웹 출현빈도 기반 미등록용언 인식 단계, 웹 출현빈도 기반 미등록명사 인식 단계로 구성된다. 제안하는 모델은 문서에서 여러 번 나타난 미등록어에 대해 전문분석을 통해 정확하게 인식할 수 있다. 그리고, 제안하는 모델은 문서에 한번 나타난 미등록어에 대해서도 웹문서를 바탕으로 광범위하게 인식할 수 있다. 또한, 제안하는 모델은 기본형이 어절에 그대로 나타나는 미등록명사뿐만 아니라 기본형이 변형하여 나타날 수 있는 미등록용언도 인식할 수 있다. 실험 결과 기존 미등록어 인식방법에 비해 제안하는 접근방법은 정확률 1.01%와 재현을 8.50%를 개선하였다.
Text summarization is the task of producing a shorter version of a long document while accurately preserving the main contents of the original text. Abstractive summarization generates novel words and phrases using a language generation method through text transformation and prior-embedded word information. However, newly coined words or out-of-vocabulary words decrease the performance of automatic summarization because they are not pre-trained in the machine learning process. In this study, we demonstrated an improvement in summarization quality through the contextualized embedding of BERT with out-of-vocabulary masking. In addition, explicitly providing precise pointing and an optional copy instruction along with BERT embedding, we achieved an increased accuracy than the baseline model. The recall-based word-generation metric ROUGE-1 score was 55.11 and the word-order-based ROUGE-L score was 39.65.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.