• Title/Summary/Keyword: coil winding

Search Result 269, Processing Time 0.024 seconds

Torque Ripple Improving and Analysis of Coil-winding Rotor of Magnetic Gear (권선계자형 자기 기어의 고 토크 리플 회전자에 대한 분석 및 개선)

  • Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.259-266
    • /
    • 2020
  • Magnetic gears have the same characteristics as mechanical gears, and each rotor does not come in contact, which is advantageous over mechanical gears in friction noise, heat generation, and maintenance. In addition, when the rotor using the coil-winding is applied, it is possible to control the output of the gear as well as to cut off its own drive in the emergency situation and to change its gear ratio. So the application of the magnetic gear is infinite. However, when the coil-winding rotor is used, cogging torque due to the attraction force between the permanent magnet and the iron core appears, which leads to an increase in the torque ripple component causing the rotor vibration. Therefore, in this paper, various shapes of the coil-winding rotor are analyzed to reduce the torque ripple of the rotor, and the optimum shape for reducing the torque ripple of the magnetic gear is presented.

Analysis on Quench Recovery Dependence of A Flux-Lock Type SFCL According to the Winding Directions (결선방향에 따른 자속구속형 전류제한기의 퀜치 회복 의존도 해석)

  • Jung, Su-Bok;Cho, Yong-Sun;Choi, Myoung-Ho;Choi, Hyo-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.113-117
    • /
    • 2008
  • We investigated the current limiting and the recovery characteristics of a flux-lock type superconducting fault current limiter(SFCL) according to the winding directions. The flux-lock type SFCL consists of two coils. The primary coil was wound in parallel to the secondary coil through an Iron core, and the secondary coil was connected with the superconducting element in series. We have changed the winding direction of coils to compare the resistive type SFCL with the flux-lock type SFCL. The current limiting and the recovery characteristics were dependent on the winding direction. The quenching time in the additive polarity winding was faster than that of the subtractive polarity winding or the resistivity type. A consumed energy in a superconducting element was represented as $W= VIt=I^2Rt$. We found that there was a difference in the consumed energies in accordance with winding types because of differences in voltages imposed on a superconducting element in accordance with a winding direction.

Optimization of Bobbin winding type Deflection Yoke Wire Distribution By Using Evolution Startegy (Evolution Startegy를 이용한 Bobbin형 편향코일의 권선분포 최적화)

  • Joe, M.C.;Kang, B.H.;Koh, C.S.;Joo, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.130-132
    • /
    • 1994
  • Recently, a Deflection Yoke(DY) is designed in the bobbin-seperator-coil-winding type for high-definite CRT and high-efficient DY of wide vision TV or High Definite TV. This paper presents an optimization or bobbin-seperator-coil-winding type yoke's coil distribution for minimizing gap between desired and practical deflections of electron beams using by Evolution Strategy.

  • PDF

Comparison of Magnetic Field and AC Losses in Solenoid Coil and Pancake Coil with HTS tape

  • Park, Myungjin;Lee, Kwangyoun;Jungwook Sim;Gueesoo Cha;Lee, Jikwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.97-101
    • /
    • 2003
  • When HTS tapes are used in power application, they are used by winding form, such as, a pancake and a solenoid. When AC current is applied to the coil, Ac magnetic field is generated in winding. This AC magnetic field acts as an external magnetic field and makes loss. In this paper the radial magnetic field component ($B_r$) and the axial magnetic field component ($B_z$) in a pancake and a solenoid were calculated by numerical analysis method and compare with measured value. AC losses of a short sample were calculated by Norris equation and n numerical analysis based on Brandt equation. AC losses of the pancake coil and the solenoid coil were also calculated.

Test of the Model Coil for a SMES (SMES용 Model Coil의 특성시험)

  • Kim, H.J.;Seong, K.C.;Cho, J.W.;Kwon, Y.K.;Ryu, K.S.;Ryu, K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.726-728
    • /
    • 2001
  • For the development of a small-sized superconducting magnetic energy storage (SMES) system we designed, fabricated and tested the model coil consisting five coils with different features, e.g. winding tensions, bore diameters and materials, cooling channels. The results show that even in the highly pre-stressed small coil A, about 70 % of the coils critical current are degraded. The quench current of the coils A, B and E with narrow cooling channels is two times as high as that of the coil C without them though they are similar except spacers. The test results also indicate that the usual training effect depends on the winding tensions of the coils but the quench characteristic does not change according to materials of a bobbin.

  • PDF

Fabrication and Test of the Model Coil for a $\mu$ SMES Magnet ($\mu$ SMES 마그네트용 Model Coil의 제작 및 특성시험)

  • 김해종;성기철;조전욱;이언용;권영길;류강식;류경우
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.89-91
    • /
    • 2001
  • For the development of a small-sized superconducting magnetic energy storage (SMES) system we designed, fabricated and tested the model coil consisting five coils with different features, e.g. winding tensions, bore diameters and materials, cooling channels. The results show that even in the highly pre-stressed small coil A, about 70 % of the coils critical current are degraded The quench current of the coils A, B and E with narrow cooling channels is two times as high as that of the coil C without them though they are similar except spacers. The test results also indicate that the usual training effect depends on the winding tensions of the coils but the quench characteristic does not change according to materials of a bobbin.

  • PDF

A Study on Electrical Characteristics for Coil Winding Number Changes of Eddy Current Bobbin Coil for Steam Generator Tubes in NPPs (원전 증기발생기 전열관 와전류검사용 보빈코일의 권선 수 변화에 대한 전기적 특성 연구)

  • Nam, Min-Woo;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.64-70
    • /
    • 2012
  • Two kinds of eddy current probes are mainly used to perform the steam generator tube integrity assesment in NPPs. The first one is the bobbin probe using for inspection of volumetric defect like a fretting wear. The second one is the rotating probe using for inspection of non-volumetric defect like a crack. The eddy current probe is one of the essential components which consist of the whole eddy current examination system, and provides a decisive data for the tube integrity in accordance with acceptance criteria described in specific procedures. The design of ECT probe is especially important to improve examination results because the quality of acquired ECT data is depended on the probe design characteristics, such as coil geometry, electrical properties, operation frequency. In this study, it is analyzed that the coil winding number of differential bobbin probe affects the electrical properties of the probe. Eddy current bobbin probes for the steam generator tubes in NPPs are designed and fabricated according to the results. Experiment shows that the change in coil winding number has much effects on the optimum inspection frequency determined by the tube geometry and material. Therefore, the coil winding number in bobbin probe is very important in the probe design. In this study, a basis of the coil winding number for the eddy current bobbin probe design for steam generator tubes in NPPs is established.

Fault Current Waveform Analysis of a Flux-Lock Type SFCL According to LC Resonance Condition of Third Winding

  • Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.213-217
    • /
    • 2008
  • The flux-lock type superconducting fault current limiter(SFCL) can apply the magnetic field into the high-$T_C$ superconducting(HTSC) element by adopting the magnetic field coil in its third winding. To apply the magnetic field into the HTSC element effectively, the capacitor for LC resonance is connected in series with the magnetic field coil. However, the current waveform of third winding for the application of the magnetic field is affected by the LC resonance condition for the frequency of the source voltage and can affect the waveform of the limited fault current. In this paper, the current waveform of the third winding in the flux-lock type SFCL according to LC resonance condition during a fault period was analyzed. From the differential equation for its electrical circuit, the current equation of the third winding was derived and described with the natural frequency and the damping ratio as design parameters. Through the analysis according to the design parameters of the third winding, the waveform of the limited fault current was confirmed to be influenced by the current waveform of the third winding and the design condition for the stable fault current limiting operation of this SFCL was obtained.

The Research for a Structure of Current Limiter using a Phasic Similitude of Magnetic Circuit (자기회로의 위상학적 상사성을 이용한 전류제한기 구조에 관한 연구)

  • Ji, Geun-Yang;Min, Kyung-Il;Lee, Su-Won;Jang, Bong-Hwan;Moon, Young-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2128-2135
    • /
    • 2009
  • In this paper, current limiter using a magnetic switching which is based on magnetic flux change in the case of fault is proposed. This current limiter consists of iron-core and three parts of coils. One is the primary coil connected to the power system. Another is the secondary coil wound to the opposite direction of the primary coil's winding. The other is the secondary of the secondary coil which is a movable copper plate winding and located below the secondary coil. In the normal state, the magnetic flux produced in the primary and secondary coils flows to the opposite directions each other and becomes to be canceled out. Therefore the voltages induced between the coils are zero. In the case of a fault, at the moment of a fault occurrence recognition, the switch connected to a secondary coil is opened and the secondary of the secondary coil is pulled out to the outside of the iron-core. Then, magnetic flux becomes to flow through the iron-core. Accordingly, the voltage is induced between the both ends of the primary coil and makes the current reduced. Therefore it is possible to cut off the circuit breaker easily with the proposed current limiter. This paper analyzes the current limiting effects and the detailed results are given.

Development of the controller for peeling off the enamel and forming of deflection yoke coil (편향요크코일의 에나멜 탈피 및 통전성형을 위한 탈피통전기의 개발)

  • Jeong, Soo-Hoa;Yun, Jong-Soon;Kwon, Woo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.202-205
    • /
    • 1995
  • Developed controller is the part of deflection yoke winding machine which controls the power to form the deflection yoke coil into desired shape after winding. So as to form the deflection yoke coil, it is needed to melt the bonding material which is spreaded on the coil. The heat melt the bonding material which is produced by flowing the current through the winded coil. Therefore, at first it is needed to peel off the enamel from the winded coil so as to flow the current, and then supply the power to produce the heat which form the winded coil into desired shape. Naturally developed controller is composed of the peeling part and the conduction and forming part. All of them consist of the inverter structure and control the output current. The peeling is achieved by low voltage and high AC current, the conduction and forming is by DC current. Developed controller also has a function that detect the resistance of the deflection yoke coil to prevent the damage of the load which is produced by poor peeling.

  • PDF