• Title/Summary/Keyword: cohesive crack fracture parameters

Search Result 17, Processing Time 0.031 seconds

Effect of shear-span/depth ratio on cohesive crack and double-K fracture parameters of concrete

  • Choubey, Rajendra Kumar;Kumar, Shailendra;Rao, M.C.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.229-247
    • /
    • 2014
  • A numerical study of the influence of shear-span/depth ratio on the cohesive crack fracture parameters and double - K fracture parameters of concrete is carried out in this paper. For the study the standard bending specimen geometry loaded with four point bending test is used. For four point loading, the shear - span/depth ratio is varied as 0.4, 1 and 1.75 and the ao/D ratio is varied from 0.2, 0.3 and 0.4 for laboratory specimens having size range from 100 - 500 mm. The input parameters for determining the double - K fracture parameters are taken from the developed fictitious crack model. It is found that the cohesive crack fracture parameters are independent of shear-span/depth ratio. Further, the unstable fracture toughness of double-K fracture model is independent of shear-span/depth ratio whereas, the initial cracking toughness of the material is dependent on the shear-span/depth ratio.

Size-effect of fracture parameters for crack propagation in concrete: a comparative study

  • Kumar, Shailendra;Barai, S.V.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 2012
  • The size-effect study of various fracture parameters obtained from two parameter fracture model, effective crack model, double-K fracture model and double-G fracture model is presented in the paper. Fictitious crack model (FCM) for three-point bend test geometry for cracked concrete beam of laboratory size range 100-400 mm is developed and the different fracture parameters from size effect model, effective crack model, double-K fracture model and double-G fracture model are evaluated using the input data obtained from FCM. In addition, the fracture parameters of two parameter fracture model are obtained using the mathematical coefficients available in literature. From the study it is concluded that the fracture parameters obtained from various nonlinear fracture models including the double-K and double-G fracture models are influenced by the specimen size. These fracture parameters maintain some definite interrelationship depending upon the specimen size and relative size of initial notch length.

A cohesive model for concrete mesostructure considering friction effect between cracks

  • Huang, Yi-qun;Hu, Shao-wei
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.51-61
    • /
    • 2019
  • Compressive ability is one of the most important mechanical properties of concrete material. The compressive failure process of concrete is pretty complex with internal tension, shear damage and friction between cracks. To simulate the complex fracture process of concrete at meso level, methodology for meso-structural analysis of concrete specimens is developed; the zero thickness cohesive elements are pre-inserted to simulate the crack initiation and propagation; the constitutive applied in cohesive element is established to describe the mechanism of crack separation, closure and friction behavior between the fracture surfaces. A series of simulations were carried out based on the model proposed in this paper. The results reproduced the main fracture and mechanical feature of concrete under compression condition. The effect of key material parameters, structure size, and aggregate content on the concrete fracture pattern and loading carrying capacities was investigated. It is found that the inner friction coefficient has a significant influence on the compression character of concrete, the compression strength raises linearly with the increase of the inner friction coefficient, and the fracture pattern is sensitive to the mesostructure of concrete.

Temperature Effects on Fracture Toughness Parameters for Pipeline Steels

  • Chanda, Sourayon;Ru, C.Q.
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1754-1760
    • /
    • 2018
  • The present article showcases a temperature dependent cohesive zone model (CZM)-based fi nite element simulation of drop weight tear test (DWTT), to analyse fracture behavior of pipeline steel (PS) at different temperatures. By co-relating the key CZM parameters with known mechanical properties of PS at varying temperature, a temperature dependent CZM for PS is proposed. A modified form of Johnson and Cook model has been used for the true stress-strain behavior of PS. The numerical model, using Abaqus/CAE 6.13, has been validated by comparing the predicted results with load-displacement curves obtained from test data. During steady-state crack propagation, toughness parameters (such as CTOA and CTOD) were found to remain fairly constant at a given temperature. These toughness parameters, however, show an exponential increase with increase in temperature. The present paper offers a plausible approach to numerically analyze fracture behavior of PS at varying temperature using a temperature dependent CZM.

Analytical methods for determination of double-K fracture parameters of concrete

  • Kumar, Shailendra;Pandey, Shashi Ranjan;Srivastava, A.K.L.
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.319-340
    • /
    • 2013
  • This paper presents a comparative study on the double-K fracture parameters of concrete obtained using four existing analytical methods such as Gauss-Chebyshev integral method, simplified Green's function method, weight function method and simplified equivalent cohesive force method. Two specimen geometries: three point bend test and compact tension specimen for sizes 100-500 mm at initial notch length to depth ratios 0.25 and 0.4 are used for the comparative study. The required input parameters for determining the double-K fracture parameters are derived from the developed fictitious crack model. It is found that the cohesive toughness and initial cracking toughness determined using weight function method and simplified equivalent cohesive force method agree well with those obtained using Gauss-Chebyshev integral method whereas these fracture parameters determined using simplified Green's function method deviates more than by 11% and 20% respectively as compared with those obtained using Gauss-Chebyshev integral method. It is also shown that all the fracture parameters related with double-K model are size dependent.

Determination of double-K fracture parameters of concrete using split-tension cube test

  • Kumar, Shailendra;Pandey, S.R.
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.81-97
    • /
    • 2012
  • This paper presents development of double-K fracture model for the split-tension cube specimen for determining the unstable fracture toughness and initial cracking toughness of concrete. There are some advantages of using of split-tension cube test like compactness and lightness over the existing specimen geometries in practice such as three-point bend test, wedge splitting test and compact tension specimen. The cohesive toughness of the material is determined using weight function having four terms for the split-tension cube specimen. Some empirical relations are also suggested for determining geometrical factors in order to calculate stress intensity factor and crack mouth opening displacement for the same specimen. The results of double-K fracture parameters of split-tension cube specimen are compared with those obtained for compact tension specimen. Finally, the influence of the width of the load-distribution of split-tension cube specimen on the double-K fracture parameters for laboratory size specimens is investigated. The input data required for determining double-K fracture parameters for both the specimen geometries are obtained using well known version of the Fictitious Crack Model.

Fracture Characteristics of Concrete at Early Ages (초기재령 콘크리트의 파괴특성)

  • Lee, Yun;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.215-220
    • /
    • 2001
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By varying strength and age, load-crack mouth opening displacement curves were obtained and the results were analyzed by linear elastic fracture mechanics. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete age from 1 day to 28 days. The obtained fracture parameters at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

  • PDF

Fracture Characteristics of Concrete at Early Ages

  • Lee, Yun;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.191-198
    • /
    • 2006
  • The objective of this study is to examine fracture characteristics of concrete at early ages, i.g. critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of effective-elastic crack model and cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By experimenting with various strengths and ages, load-crack mouth opening curves were obtained, and the results were analyzed by linear elastic fracture mechanics and FEM(finite element method). The results from the test and analysis showed that critical stress intensity factor and facture energy increased while critical crack-tip opening displacement decreased with concrete aging from 1 day to 28 days. Four parameters of bilinear softening curve from 1 day to 28 days were obtained from a numerical analysis. The obtained fracture parameters and bilinear softening curves at early ages from this study are to be used as a fracture criterion and an input data for the finite element analysis of concrete at early ages.

Evaluation of Adhesive Properties Using Cohesive Zone Model : Mode I (Cohesive Zone Model을 이용한 접착제 물성평가 : 모드 I)

  • Lee, Chan-Joo;Lee, Sang-Kon;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.474-481
    • /
    • 2009
  • Fracture models and criteria of adhesive with two parameters, namely $G_C$ and ${\sigma}_{max}$, have been developed to describe the fracture process of adhesive joints. Cohesive zone model(CZM) is a representative two parameter failure criteria approach. In CZM, ${\sigma}_{max}$ is a critical, limiting maximum value of the stress in the damage zone ahead of the crack and is assumed to have some physical significance in adhesive failure. Based on CZM and finite element analysis method, the relationship between fracture load and adhesive properties, as $G_{IC)$ and $({\sigma}_{max})_I$, was investigated in adhesively bonded joint tensile test and T-peel test. The two parameters in tensile mode loading were evaluated by using the relationship. The value of $G_{\IC}$ evaluated by proposed method showed close agreement with analytical solution for tapered double cantilever beam(TDCB) test which proposed in an ASTM standard.

A Study on the Effect of Cohesive Laws on Finite Element Analysis of Crack Propagation Using Cohesive Elements (응집 요소를 사용한 균열 진전 유한요소 해석에서 응집 법칙의 영향에 대한 연구)

  • Seo, Hyeong-Seok;Baek, Hyung-Chan;Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.401-407
    • /
    • 2014
  • In this paper, the effect of cohesive laws on the finite element analysis of crack propagation using cohesive elements is investigated through three-point bending and double cantilever beam problems. The cohesive elements are implemented into ABAQUS/Standard user subroutines(UEL), and the shape of cohesive law is varied by changing parameters in polynomial functions of cohesive traction-separation relations. In particular, crack propagation behaviors are studied by comparing load-displacement curves of the analysis models which have different shapes of cohesive laws with the same values of fracture energy and cohesive strength. Furthermore, the influence of the element size on crack propagation is discussed in this study.