Browse > Article
http://dx.doi.org/10.12989/cac.2012.9.1.001

Size-effect of fracture parameters for crack propagation in concrete: a comparative study  

Kumar, Shailendra (Department of Civil Engineering, National Institute of Technology)
Barai, S.V. (Department of Civil Engineering, Indian Institute of Technology)
Publication Information
Computers and Concrete / v.9, no.1, 2012 , pp. 1-19 More about this Journal
Abstract
The size-effect study of various fracture parameters obtained from two parameter fracture model, effective crack model, double-K fracture model and double-G fracture model is presented in the paper. Fictitious crack model (FCM) for three-point bend test geometry for cracked concrete beam of laboratory size range 100-400 mm is developed and the different fracture parameters from size effect model, effective crack model, double-K fracture model and double-G fracture model are evaluated using the input data obtained from FCM. In addition, the fracture parameters of two parameter fracture model are obtained using the mathematical coefficients available in literature. From the study it is concluded that the fracture parameters obtained from various nonlinear fracture models including the double-K and double-G fracture models are influenced by the specimen size. These fracture parameters maintain some definite interrelationship depending upon the specimen size and relative size of initial notch length.
Keywords
concrete fracture; fracture process zone; cohesive stress distribution; nonlinear fracture models; size-effect; three-point bending test;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Alshoaibi, A.M. (2010), "Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading", Struct. Eng. Mech., 35(3), 283-299.   DOI
2 Barenblatt, G.I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture", Adv. Appl. Mech., 7(1), 55-129.   DOI
3 Bazant, Z.P. (2002), "Concrete fracture models: testing and practice", Eng. Fract. Mech., 69, 165-205.   DOI   ScienceOn
4 Bazant, Z.P., Gettu, R. and Kazemi, M.T. (1991), "Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curve", Int. J. Rock Mech. Min., 28(1), 43-51.   DOI   ScienceOn
5 Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(93), 155-177.
6 Bazant, Z.P., Kim, J.K. and Pfeiffer, P.A. (1986), "Determination of fracture properties from size effect tests", J. Struct. Eng. - ASCE, 112(2), 289-307.   DOI   ScienceOn
7 Bazant, Z.P. and Planas, J. (1998), Fracture and size effect in concrete and other quasibrittle materials, Florida CRC Press.
8 Carpinteri, A. (1989), "Cusp catastrophe interpretation of fracture instability", J. Mech. Phys. Solids, 37(5), 567- 582.   DOI   ScienceOn
9 Cusatis, G. and Schauffert, E.A. (2009), "Cohesive crack analysis of size effect", Eng. Fract. Mech., 76, 2163- 2173.   DOI   ScienceOn
10 Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solids, 8(2), 100-104.   DOI   ScienceOn
11 Elices, M. and Planas, J. (1996), "Fracture mechanics parameters of concrete an overview", Adv. Cem. Based Mater., 4, 116-127.
12 Elices, M., Guinea, G.V. and Planas, J. (1992), "Measurement of the fracture energy using three-point bend tests: Part 3- Influence of cutting the P-$\delta$ tail", Mater. Struct., 25, 327-334.   DOI
13 Elices, M., Guinea, G.V. and Planas, J. (1997), "On the measurement of concrete fracture energy using threepoint bend tests", Mater. Struct., 30, 375-376.   DOI
14 Elices, M., Rocco, C. and Rosello, C. (2009), "Cohesive crack modeling of a simple concrete: experimental and numerical results", Eng. Fract. Mech., 76, 1398-1410.   DOI   ScienceOn
15 Gasser, T.C. (2007), "Validation of 3D crack propagation in plain concrete. Part II: Computational modeling and predictions of the PCT3D test", Comput. Concrete, 4(1), 67-82.   DOI
16 Guinea, G.V., Planas, J. and Elices, M. (1992), "Measurement of the fracture energy using three-point bend tests: Part 1 - Influence of experimental procedures", Mater. Struct., 25,, 212-218.   DOI
17 Hanson, J.H. and Ingraffea, A.R. (2003), "Using numerical simulations to compare the fracture toughness values for concrete from the size-effect, two-parameter and fictitious crack models", Eng. Fract. Mech., 70, 1015- 1027.   DOI   ScienceOn
18 Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782.   DOI   ScienceOn
19 Jenq, Y.S. and Shah, S.P. (1985), "Two parameter fracture model for concrete", J. Eng. Mech. - ASCE, 111(10),
20 Karihaloo, B.L. and Nallathambi, P. (1989), "An improved effective crack model for the determination of fracture toughness of concrete", Cement Concrete Res., 19, 603-610.   DOI   ScienceOn
21 Karihaloo, B.L. and Nallathambi, P. (1990), "Size-effect prediction from effective crack model for plain concrete", Mater. Struct., 23(3), 178-185.   DOI   ScienceOn
22 Karihaloo, B.L. and Nallathambi, P. (1991), "Notched beam test: mode I fracture toughness", Fracture Mechanics Test methods for concrete, Report of RILEM Technical Committee 89-FMT (Edited by S.P. Shah and A. Carpinteri), Chamman & Hall, London, 1-86.
23 Kim, J.K., Lee, Y. and Yi, S.T. (2004), "Fracture characteristics of concrete at early ages", Cement Concrete Res., 34, 507-519.   DOI   ScienceOn
24 Kumar, S. and Barai, S.V. (2010), "Size-effect prediction from the double-K fracture model for notched concrete beam", Int. J. Damage Mech., 9, 473-497.
25 Kumar, S. and Barai, S.V. (2008), "Influence of specimen geometry and size-effect on the KR-curve based on the cohesive stress in concrete", Int. J. Fracture, 152, 127-148.   DOI   ScienceOn
26 Kumar, S. and Barai, S.V. (2009a), "Equivalence between stress intensity factor and energy approach based fracture parameters of concrete", Eng. Fract. Mech., 76, 1357-1372.   DOI   ScienceOn
27 Kumar, S. and Barai, S.V. (2009b), "Effect of softening function on the cohesive crack fracture parameters of concrete CT specimen", Sadhana-Acad. P. Eng. S., 36(6), 987-1015.
28 Kwon, S.H., Zhao, Z. and Shah, S.P. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve", Cement Concrete Res., 38, 1061-1069.   DOI   ScienceOn
29 MATLAB, Version 7, The MathWorks, Inc., Copyright 1984-2004.
30 Nallathambi, P. and Karihaloo, B.L. (1986), "Determination of specimen-size independent fracture toughness of plain concrete", Mag. Concrete Res., 38(135), 67-76.   DOI   ScienceOn
31 Ouyang, C., Tang, T. and Shah, S.P. (1996), "Relationship between fracture parameters from two parameter fracture model and from size effect model", Mater. Struct., 29(2), 79-86.   DOI
32 Park, K., Paulino, G.H. and Roesler, J.R. (2008), "Determination of the kink point in the bilinear softening model for concrete", Eng. Fract. Mech., 7, 3806-3818.
33 Petersson, P.E. (1981), "Crack growth and development of fracture zone in plain concrete and similar materials", Report No. TVBM-100, Lund Institute of Technology.
34 Philip, P. (2009), "A quasistatic crack propagation model allowing for cohesive forces and crack reversibility", Interact. Multiscale Mech., 2(1), 31-44.   DOI
35 Planas, J. and Elices, M. (1990), "Fracture criteria for concrete: mathematical validations and experimental validation", Eng. Fract. Mech., 35, 87-94.   DOI
36 RILEM Draft Recommendation (TC50-FMC) (1985), "Determination of fracture energy of mortar and concrete by means of three-point bend test on notched beams", Mater. Struct., 18(4), 287-290.   DOI   ScienceOn
37 Planas, J. and Elices, M. (1991), "Nonlinear fracture of cohesive material", Int. J. Fracture, 51, 139-157.
38 Planas, J. and Elices, M. (1992), "Shrinkage eignstresses and structural size-effects", In Fracture Mechanics of Concrete Structures, Z.P. Bazant, ed., Elsevier Applied Science, London, 939-950.
39 Planas, J., Elices, M. and Guinea, G.V. (1992), "Measurement of the fracture energy using three-point bend tests: Part 2-Influence of bulk energy dissipation", Mater. Struct., 25, 305-312.   DOI
40 RILEM Draft Recommendations (TC89-FMT) (1990a), "Determination of fracture parameters ( and CTODc) of plain concrete using three-point bend tests", Mater. Struct., 23(138), 457-460.   DOI
41 RILEM Draft Recommendations (TC89-FMT) (1990b), "Size-effect method for determining fracture energy and process zone size of concrete", Mater. Struct., 23(138), 461-465.   DOI
42 Roesler, J., Paulino, G.H., Park, K. and Gaedicke, C. (2007), "Concrete fracture prediction using bilinear softening", Cement Concrete Compos., 29, 300-312.   DOI   ScienceOn
43 Tada, H., Paris, P.C. and Irwin, G. (1985), The stress analysis of cracks handbook, Paris Productions Incorporated, St. Louis, Missouri, USA.
44 Tang, T., Shah, S.P. and Ouyang, C. (1992), "Fracture mechanics and size effect of concrete in tension", J. Struct. Eng. - ASCE, 118(11), 3169-3185.   DOI
45 Xu, S. and Reinhardt, H.W. (1998), "Crack extension resistance and fracture properties of quasi-brittle materials like concrete based on the complete process of fracture", Int. J. Fracture, 92, 71-99.   DOI   ScienceOn
46 Xu, S. and Reinhardt, H.W. (1999a), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part I: Experimental investigation of crack propagation", Int. J. Fracture, 98,111-149.   DOI   ScienceOn
47 Xu, S., Reinhardt, H.W., Wu, Z. and Zhao, Y. (2003), "Comparison between the double-K fracture model and the two parameter fracture model", Otto-Graf J., 14, 131-158.
48 Xu, S. and Reinhardt, H.W. (1999b), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams", Int. J. Fracture, 98, 151-77.   DOI   ScienceOn
49 Xu, S. and Reinhardt, H.W. (1999c), "Determination of double-K criterion for crack propagation in quasi-brittle materials, Part III: compact tension specimens and wedge splitting specimens", Int. J. Fracture, 98, 179-193.   DOI   ScienceOn
50 Xu, S. and Zhang, X. (2008), "Determination of fracture parameters for crack propagation in concrete using an energy approach", Eng. Frac. Mech., 75, 4292-4308.   DOI   ScienceOn
51 Zhao, Z., Kwon, S.H. and Shah, S.P. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part I. Experiments and fracture energy", Cement Concrete Res., 38, 1049-1060.   DOI   ScienceOn