DOI QR코드

DOI QR Code

A Study on the Effect of Cohesive Laws on Finite Element Analysis of Crack Propagation Using Cohesive Elements

응집 요소를 사용한 균열 진전 유한요소 해석에서 응집 법칙의 영향에 대한 연구

  • Seo, Hyeong-Seok (Dept. of Mechanical & Automotive Engineering, Seoul Nat'l Univ. of Sci. & Tech.) ;
  • Baek, Hyung-Chan (Dept. of Mechanical & Automotive Engineering, Seoul Nat'l Univ. of Sci. & Tech.) ;
  • Kim, Hyun-Gyu (Dept. of Mechanical & Automotive Engineering, Seoul Nat'l Univ. of Sci. & Tech.)
  • 서형석 (서울과학기술대학교 기계자동차공학과) ;
  • 백형찬 (서울과학기술대학교 기계자동차공학과) ;
  • 김현규 (서울과학기술대학교 기계자동차공학과)
  • Received : 2013.12.26
  • Accepted : 2014.02.26
  • Published : 2014.04.01

Abstract

In this paper, the effect of cohesive laws on the finite element analysis of crack propagation using cohesive elements is investigated through three-point bending and double cantilever beam problems. The cohesive elements are implemented into ABAQUS/Standard user subroutines(UEL), and the shape of cohesive law is varied by changing parameters in polynomial functions of cohesive traction-separation relations. In particular, crack propagation behaviors are studied by comparing load-displacement curves of the analysis models which have different shapes of cohesive laws with the same values of fracture energy and cohesive strength. Furthermore, the influence of the element size on crack propagation is discussed in this study.

본 논문에서는 3점 굽힘과 이중 외팔보 문제에 대하여 응집 요소를 사용한 유한요소 균열 진전해석을 수행하고 응집 법칙의 영향을 알아보았다. 응집 요소는 ABAQUS/Standard의 사용자 서브루틴(UEL)으로 구현하였으며 응집 법칙은 다항식 형태의 응집 트랙션-열림 변위의 관계식을 사용하였고 응집 법칙의 형상에 대한 영향을 알아 보기 위하여 다항식의 계수를 변화시켰다. 동일한 파손 에너지와 응집 강도를 갖지만 다른 형상의 응집 법칙에 대한 해석을 수행하고 변위-반력 곡선을 비교하여 균열 진전 거동의 변화를 알아보았다. 또한 요소 크기에 따른 균열 진전 해석 결과의 영향을 논의하였다.

Keywords

References

  1. Alfano, G. and Crisfield, M. A., 2001, "Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues," Int. J. Numer. Methods Eng., Vol. 77, No. 2, pp. 111-170.
  2. Valoroso, N. and Champaney, L., 2006, "A Damage-Mechanics-Based Approach for Modeling Decohesion in Adhesively Bonded Assemblies," Eng. Fract. Mech., Vol. 73, No. 18, pp. 2774-2801. https://doi.org/10.1016/j.engfracmech.2006.04.029
  3. Tvergaard, V. and Hutchinson, J. W., 1992, "The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids," J. Mech. Phys. Solids, Vol. 40, No. 6, pp. 1377-1397. https://doi.org/10.1016/0022-5096(92)90020-3
  4. Scheider, I. and Brocks, W., 2003, "The Effect of Traction Separation Law on the Result of Cohesive Zone Crack Propagation Analyses," Key Eng. Mater., Vols. 251-252, pp. 313-318. https://doi.org/10.4028/www.scientific.net/KEM.251-252.313
  5. Shet, C. and Chandra, N., 2004, "Effect of the Shape of T- ${\delta}$ Cohesive Zone Curves on the Fracture Response," Mech. Adv. Mater. Struct., Vol. 11, No. 3, pp. 267-274.
  6. Hong, S. and Kim, K.-S., 2003, "Extraction of Cohesive-Zone Laws from Elastic Far-Fields of a Cohesive Crack Tip: a Field Projection Method," J. Mech. Phys. Solids, Vol. 51, No. 7, pp. 1267-1286. https://doi.org/10.1016/S0022-5096(03)00023-1
  7. Kim, H.-G., Chew, H. B. and Kim, K.-S., 2012, "Inverse Extraction of Cohesive Zone Laws by Field Projection Method Using Numerical Auxiliary Fields," Int. J. Numer. Methods Eng., Vol. 91, No. 5, pp. 524-528.
  8. Oh, J.-C. and Kim, H.-G., 2013, "Inverse Estimation of Cohesive Zone Laws from Experimentally Measured Displacements for the Quasi-Static Mode I Fracture of PMMA," Eng. Fract. Mech., Vol. 99, No. 1, pp. 120-121.
  9. Turon, A., Davila, C. G., Camanho, P. P. and Costa, J., 2007, "An Engineering Solution for Mesh Size Effects in the Simulation of Delamination using Cohesive Zone Model," Eng. Fract. Mech., Vol. 74, No. 10, pp. 1674-1676.
  10. Zhou, F. and Molinari, J. F., 2004, "Dynamic Crack Propagation with Cohesive Element: a Methodology to Address Mesh Dependency," Int. J. Numer. Methods Eng, Vol. 59, No. 1, pp. 7-12.