• 제목/요약/키워드: cognitive cooperative network

검색결과 77건 처리시간 0.023초

Silence Reporting for Cooperative Sensing in Cognitive Radio Networks

  • Kim, Do-Yun;Choi, Young-June;Choi, Jeung Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제10권3호
    • /
    • pp.59-64
    • /
    • 2018
  • A cooperative spectrum sensing has been proposed to improve the sensing performance in cognitive radio (CR) network. However, cooperative sensing causes additional overhead for reporting the result of local sensing to the fusion center. In this paper, we propose a technique to reduce the overhead of data transmission of cooperative sensing for applying the quantum data fusion technique in cognitive radio networks by omitting the lowest quantized in the local sensed results. If a CR node senses the lowest quantized level, it will not send its local sensing data in the corresponding sensing period. The fusion center can implcitly know that a spectific CR node sensed lowest level if there is no report from that CR node. The goal of proposed sensing policy is to reduce the overhead of quantized data fusion scheme for cooperative sensing. Also, our scheme can be adapted to all quantized data fusion schemes because it only deal with the form of the quantized data report. The experimental results show that the proposed scheme improves performance in terms of reporting overhead.

A Cooperative Spectrum Sensing Scheme with an Adaptive Energy Threshold in Cognitive Radios

  • Van, Hiep-Vu;Koo, In-Soo
    • Journal of information and communication convergence engineering
    • /
    • 제9권4호
    • /
    • pp.391-395
    • /
    • 2011
  • Cognitive radio (CR) technique is a useful tool for improving spectrum utilization by detecting and using the vacant frequency bands while avoiding interference to the primary user. The sensing performance in a CR network can be improved by allowing some CR users to perform cooperative spectrum sensing. In this paper, we propose a new sensing algorithm that utilizes an adaptive energy threshold for cooperative spectrum sensing in which a changeable energy threshold is adopted by the CR users for improving local sensing performance. Through the proposed scheme, the reliability of global decision can be enhanced mainly due to the improvement in local sensing performance.

Queuing Analysis of Opportunistic in Network Selection for Secondary Users in Cognitive Radio Systems

  • Tuan, Le Ahn;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(D)
    • /
    • pp.265-267
    • /
    • 2012
  • This paper analyzes network selection issues of secondary users (SUs) in Cooperative Cognitive Radio Networks (CRNs) by utilizing Queuing Model. Coordinating with Handover Cost-Based Network selection, this paper also addresses an opportunity for the secondary users (SUs) to enhance QoS as well as economics efficiency. In this paper, network selection of SUs is the optimal association between Overall System Time Minimization Problem evaluation of Secondary Connection (SC) and Handover Cost-Based Network selection. This will be illustrated by simulation results.

Optimal Throughput of Secondary Users over Two Primary Channels in Cooperative Cognitive Radio Networks

  • Vu, Ha Nguyen;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • 제12권1호
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper, we investigated the throughput of a cognitive radio network where two primary frequency channels (PCs) are sensed and opportunistically accessed by N secondary users. The sharing sensing member (SSM) protocol is introduced to sense both PCs simultaneously. According to the SSM protocol, N SUs (Secondary User) are divided into two groups, which allows for the simultaneous sensing of two PCs. With a frame structure, after determining whether the PCs are idle or active during a sensing slot, the SUs may use the remaining time to transmit their own data. The throughput of the network is formulated as a convex optimization problem. We then evaluated an iterative algorithm to allocate the optimal sensing time, fusion rule and the number of members in each group. The computer simulation and numerical results show that the proposed optimal allocation improves the throughput of the SU under a misdetection constraint to protect the PCs. If not, its initial date of receipt shall be nullified.

Attack-Proof Cooperative Spectrum Sensing Based on Consensus Algorithm in Cognitive Radio Networks

  • Liu, Quan;Gao, Jun;Guo, Yunwei;Liu, Siyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권6호
    • /
    • pp.1042-1062
    • /
    • 2010
  • Cooperative spectrum sensing (CSS) is an effective technology for alleviating the unreliability of local spectrum sensing due to fading/shadowing effects. Unlike most existing solutions, this paper considers the use of CSS technology in decentralized networks where a fusion center is not available. In such a decentralized network, some attackers may sneak into the ranks of cooperative users. On the basis of recent advances in bio-inspired consensus algorithms, an attack-proof, decentralized CSS scheme is proposed in which all secondary users can maintain cooperative sensing by exchanging information locally instead of requiring centralized control or data fusion. Users no longer need any prior knowledge of the network. To counter three potential categories of spectrum sensing data falsification (SSDF) attacks, some anti-attack strategies are applied to the iterative process of information exchange. This enables most authentic users to exclude potentially malicious users from their neighborhood. As represented by simulation results, the proposed scheme can generally ensure that most authentic users reach a consensus within the given number of iterations, and it also demonstrates much better robustness against different SSDF attacks than several existing schemes.

Spectrum Leasing and Cooperative Resource Allocation in Cognitive OFDMA Networks

  • Tao, Meixia;Liu, Yuan
    • Journal of Communications and Networks
    • /
    • 제15권1호
    • /
    • pp.102-110
    • /
    • 2013
  • This paper considers a cooperative orthogonal frequency division multiple access (OFDMA)-based cognitive radio network where the primary system leases some of its subchannels to the secondary system for a fraction of time in exchange for the secondary users (SUs) assisting the transmission of primary users (PUs) as relays. Our aim is to determine the cooperation strategies among the primary and secondary systems so as to maximize the sum-rate of SUs while maintaining quality-of-service (QoS) requirements of PUs. We formulate a joint optimization problem of PU transmission mode selection, SU (or relay) selection, subcarrier assignment, power control, and time allocation. By applying dual method, this mixed integer programming problem is decomposed into parallel per-subcarrier subproblems, with each determining the cooperation strategy between one PU and one SU. We show that, on each leased subcarrier, the optimal strategy is to let a SU exclusively act as a relay or transmit for itself. This result is fundamentally different from the conventional spectrum leasing in single-channel systems where a SU must transmit a fraction of time for itself if it helps the PU's transmission. We then propose a subgradient-based algorithm to find the asymptotically optimal solution to the primal problem in polynomial time. Simulation results demonstrate that the proposed algorithm can significantly enhance the network performance.

Throughput maximization for underlay CR multicarrier NOMA network with cooperative communication

  • Manimekalai, Thirunavukkarasu;Joan, Sparjan Romera;Laxmikandan, Thangavelu
    • ETRI Journal
    • /
    • 제42권6호
    • /
    • pp.846-858
    • /
    • 2020
  • The non-orthogonal multiple access (NOMA) technique offers throughput improvement to meet the demands of the future generation of wireless communication networks. The objective of this work is to further improve the throughput by including an underlay cognitive radio network with an existing multi-carrier NOMA network, using cooperative communication. The throughput is maximized by optimal resource allocation, namely, power allocation, subcarrier assignment, relay selection, user pairing, and subcarrier pairing. Optimal power allocation to the primary and secondary users is accomplished in a way that target rate constraints of the primary users are not affected. The throughput maximization is a combinatorial optimization problem, and the computational complexity increases as the number of users and/or subcarriers in the network increases. To this end, to reduce the computational complexity, a dynamic network resource allocation algorithm is proposed for combinatorial optimization. The simulation results show that the proposed network improves the throughput.

Log-Average-SNR Ratio and Cooperative Spectrum Sensing

  • Yue, Dian-Wu;Lau, Francis C.M.;Wang, Qian
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.311-319
    • /
    • 2016
  • In this paper, we analyze the spectrum-sensing performance of a cooperative cognitive radio (CR) network consisting of a number of CR nodes and a fusion center (FC). We introduce the "log-average-SNR ratio" that relates the average SNR of the CR-node-FC link and that of the primary-user-CR-node link. Assuming that the FC utilizes the K-out-of-N rule as its decision rule, we derive exact expressions for the sensing gain and the coding gain - parameters used to characterize the CR network performance at the high SNR region. Based on these results, we determine ways to optimize the performance of the CR network.

Green Cooperative Sensing Scheme in Heterogeneous Networks

  • Shen, Lifei;Liu, Jian;Tan, Xinxin;Wang, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.550-565
    • /
    • 2018
  • Cognitive radio technology is still the key technology of future mobile communication systems. Previous studies have focused on improving spectrum utilization and less energy consumption. In this paper, we propose an Overhead Reduced Scheme (ORS) for green cooperative spectrum sensing. Compared to traditional cooperative sensing scheme, ORS scheme divides the sensing time into three time slots and selects the best multi-mode user to report decisions. In consideration of reporting channel deviation, we derive closed-form expressions for detection probability and false alarm probability of ORS scheme based on Rayleigh fading channel. Simulation results show that ORS scheme can improve the perception accuracy while reducing the perceived delay and energy consumption in the process of perception, so as to realize the green communication.

Optimization of Cooperative Sensing in Interference-Aware Cognitive Radio Networks over Imperfect Reporting Channel

  • Kan, Changju;Wu, Qihui;Song, Fei;Ding, Guoru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권4호
    • /
    • pp.1208-1222
    • /
    • 2014
  • Due to the low utilization and scarcity of frequency spectrum in current spectrum allocation methodology, cognitive radio networks (CRNs) have been proposed as a promising method to solve the problem, of which spectrum sensing is an important technology to utilize the precious spectrum resources. In order to protect the primary user from being interfered, most of the related works focus only on the restriction of the missed detection probability, which may causes over-protection of the primary user. Thus the interference probability is defined and the interference-aware sensing model is introduced in this paper. The interference-aware sensing model takes the spatial conditions into consideration, and can further improve the network performance with good spectrum reuse opportunity. Meanwhile, as so many fading factors affect the spectrum channel, errors are inevitably exist in the reporting channel in cooperative sensing, which is improper to be ignored. Motivated by the above, in this paper, we study the throughput tradeoff for interference-aware cognitive radio networks over imperfect reporting channel. For the cooperative spectrum sensing, the K-out-of-N fusion rule is used. By jointly optimizing the sensing time and the parameter K value, the maximum throughput can be achieved. Theoretical analysis is given to prove the feasibility of the optimization and computer simulations also shows that the maximum throughput can be achieved when the sensing time and the parameter of K value are both optimized.