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Abstract 
 

Cooperative spectrum sensing (CSS) is an effective technology for alleviating the unreliability 
of local spectrum sensing due to fading/shadowing effects. Unlike most existing solutions, this 
paper considers the use of CSS technology in decentralized networks where a fusion center is 
not available. In such a decentralized network, some attackers may sneak into the ranks of 
cooperative users. On the basis of recent advances in bio-inspired consensus algorithms, an 
attack-proof, decentralized CSS scheme is proposed in which all secondary users can maintain 
cooperative sensing by exchanging information locally instead of requiring centralized control 
or data fusion. Users no longer need any prior knowledge of the network. To counter three 
potential categories of spectrum sensing data falsification (SSDF) attacks, some anti-attack 
strategies are applied to the iterative process of information exchange. This enables most 
authentic users to exclude potentially malicious users from their neighborhood. As represented 
by simulation results, the proposed scheme can generally ensure that most authentic users 
reach a consensus within the given number of iterations, and it also demonstrates much better 
robustness against different SSDF attacks than several existing schemes. 
 
 
Keywords: Cognitive radio networks, cooperative spectrum sensing, consensus, spectrum 
sensing data falsification, metropolis weights 
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1. Introduction 

As evidenced by recent measurements [1], the increasingly severe problem of spectrum 
scarcity is largely due to inefficient static frequency allocation rather than to any physical 
shortage of spectrum. This has led regulatory agencies, such as the Federal Communications 
Commission (FCC), to reconsider the problem of spectrum management. With spectrum 
demands from emerging wireless applications rapidly increasing, spectrum policy reform is 
inevitable. Dynamic spectrum access (DSA) is the most explored idea for non-conventional 
spectrum management. Cognitive radio networks (CRNs), which are based on the hierarchical 
DSA model [2], seems to be a promising paradigm for thoroughly solving the spectrum 
scarcity problem, since unlicensed secondary users (SUs) in CRNs are allowed to share, 
opportunistically, any spectrum temporarily unused by licensed primary users (PUs).  

To avoid any interference with the existing primary systems, the fundamental requirement 
for SUs is to periodically sense the presence of PUs. Among various possibilities, energy 
detection (ED) [3][4] is the optimal sensing algorithm and has been widely applied thanks to 
its relatively low complexity and lack of requirements for prior knowledge of the network. 
However, the performance of ED is very susceptible to multipath fading/shadowing and noise 
uncertainty, which necessitates cooperative spectrum sensing (CSS) among different SUs in 
the link layer of CRNs [5]. Consequently, many CSS schemes have been studied in recent 
literature. Most of them are fusion-based schemes, in which a base station (BS; in a centralized 
CRN) or a fusion center (FC; in a decentralized CRN) is always needed to perform data fusion 
[6][7][8] or decision combination [5][9][10]. Although such schemes can significantly 
improve sensing performance, they might be impractical in certain decentralized CRNs, in 
which a BS or FC may be not available to collect the local decisions or data from all 
cooperating users. Thus, some recent research has been conducted on CSS without fusion. In 
[11], assuming knowledge of the PU transmitter, Ganesan proposed a novel CSS scheme 
based on the relay and forwarding protocol without any centralized control. In [12], Z. Li and 
F.R. Yu were first to introduce the notion of bio-inspired consensus algorithms into 
decentralized CSS. These algorithms were initially related to certain complex natural 
phenomena, such as the flocking of birds, and are now widely used in wireless sensor 
networks [13]. The key feature of their scheme is that each SU can maintain coordination 
solely through local interactions with its neighbors, without any centralized control or 
combination. Such a fully distributed and scalable algorithm is feasible for decentralized 
CRNs, thus meriting further investigation.  

Another fundamental issue in CSS is the security of the sensing procedure. Either 
centralized fusion or local information exchange could be attacked by malicious users, 
introducing some nontrivial security challenges. Thus, the security of these aspects should be 
addressed before the benefits of any CSS scheme may be fully reaped in practice. However, 
this area has yet to receive adequate attention. R. Chen classified the potential security threats 
to the sensing procedures into two categories: primary user emulation (PUE), in the physical 
layer, and spectrum sensing data falsification (SSDF), in the link layer [14]. In a PUE attack, a 
malicious user tries to gain priority over other SUs by transmitting signals that emulate the 
characteristics of a PU. To combat this, a transmitter verification scheme was proposed in [15]. 
In a SSDF attack, a malicious user sends false or confusing reports (decision or data) to the BS, 
FC, or its link neighbors, which could potentially disrupt CSS, thus causing interference with 
PUs or resulting in under-utilized, fallow licensed spectrum. To counter SSDF attacks against 
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fusion-based CSS, the authors of [16] proposed some strategies based on a weighted 
sequential probability ratio test (WSPRT), and the authors of [17] placed the report history of 
each SU in high-dimensional space and detected possible abnormalities with the techniques 
used in data mining. Although [18] has done some initial work on the security issues of 
consensus-based CSS, to the best of our knowledge, no detailed discussion or further 
developments in this area are reported. 

As a result, in this paper, we extend the study of consensus-based CSS, with the main focus 
on an unavoidable security problem: how to counter SSDF attacks on decentralized CRNs. 
The main contribution of our work is that we present an attack-proof CSS scheme utilizing a 
consensus algorithm without any central control or fusion. The proposed scheme is proactive 
in countering SSDF attacks, since each authentic SU can identify and reject false or confusing 
reports from malicious users during information exchange. If the time constraint for sensing 
permits, the states of authentic users will converge to a common value in most cases. Each SU 
then individually makes its own decision based on this final state. Extensive simulation results 
illustrate the improved robustness of the proposed scheme against all three potential SSDF 
attack models. 

The remainder of this paper is organized as follows. In Section 2, the system model is 
described, together with a brief introduction to the notion of consensus, local energy detection, 
and SSDF attack models. In Section 3, based on the consensus algorithm, a CSS scheme is 
proposed to counter SSDF attacks. Section 4 provides the simulation results, and Section 5 
presents the conclusions. 

2. System Model 

We consider a decentralized CRN composed of N cooperative SUs without any central control 
or fusion center. CSS is viewed as a typical multiagent coordination problem [19]. To solve 
this problem, we utilize a consensus algorithm as an iteration rule that specifies the 
information exchange between each SU and all of its neighbors. “Consensus” means reaching 
an agreement regarding a certain quantity of interest that depends on the states of all authentic, 
cooperating SUs.  

Unlike traditional radios, SUs are inherently of lower priority on the network. Thus, each 
SU must be able to identify the spectrum before transmitting in order to avoid unacceptable 
interference with the PUs. While utilizing a spectrum hole, the SUs are also responsible for 
monitoring return PUs on the current channel so as to promptly vacate the channel if required. 
For simplicity, we assume that all SUs perform synchronous, periodic sensing with a generic 
time-fragment frame as shown in Fig. 1. This can be divided into four parts: local sensing, 
information exchange, final decision, and data transmission, each with the time duration of 

lT , cT , fT and dT , respectively. In a sensing period, each SU first individually performs local 

spectrum sensing and then establishes communication links with its neighbors to exchange its 
own states until the iteration exceeds the time limit cT . With the last state of the iteration, each 
SU individually makes a final decision. Depending on whether the channel is identified as 
busy or idle, each user will keep silent or transmit during the data-transmission block. 

pT denotes the sensing period, defined as the maximum time during which SUs may be 

unaware of a reappearing PU [20], and sT is the total sensing overhead caused by all three steps 

of sensing (i.e., s l c fT T T T   ). In this framework, both the sensing and transmission times 

should be fine-tuned to balance quality of service (QoS) with the avoidance of interference. 
This is often interpreted as maximizing the SUs’ spectrum efficiency as long as the 
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requirement of PU protection can be satisfied [20]. Also, there exists another tradeoff between 
the overhead required for local processing and that required for cooperation, which can be 
solved by finding the optimal values of lT  and cT  to achieve a certain level of performance 
[21]. Both of these tradeoffs should be well balanced by means of some kind of sensing control 
in the MAC layer [22]. However, this is beyond the scope of this paper, so we assume that the 
values of lT , cT , and fT  have been regulated and that they are known by each SU.  
 

 
Fig. 1. Generic time-fragmentation frame 

2.1 Local Spectrum Sensing  

We choose energy detectors for local spectrum sensing without obscuring the analysis by 
employing sophisticated algorithms. The block diagram of the energy detector at the i-th SU 
( [1, ]i N ) is depicted in Fig. 2 [3][4]. The received signal ( )ix t is firstly sampled and filtered 
within the interested bandwidth W to remove out-of-band noise, and then the normalized 
accumulated energy in the observation interval lT  is computed as below [3]: 
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Fig. 2. Block diagram of the i-th energy detector 

 
where m is the time-bandwidth product lm WT , ( )s n  is the sampled primary signal, and 

iY , ( )ih n , and ( )iw n represent the normalized test statistic, the sampled amplitude gain, and 
additive white Gaussian noise at the i-th SU, respectively. It has been derived in [3] that the 
test statistic iY has central and non-central chi-square distributions under H0 and H1, 
respectively: 
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where  0i P N W  is the local sensing SNR, with P  and 0N  being the power of the primary 

signal and the one-sided noise power spectral density, respectively. If a binary decision is 
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needed locally, the normalized energy will be further compared to a local threshold i  to 
decide directly whether a PU signal is present or not [3]. 

2.2 SSDF Attack on Decentralized CSS 

Decentralized CSS can be disrupted by SSDF attacks, since some hostile users may sneak into 
the ranks of cooperative SUs once they successfully cheat nearby authentic users into 
establishing data links with them. It is also possible for an honest SU to be compromised or 
controlled by adverse parties. Such hostile, compromised, or malicious SUs may launch SSDF 
attacks by sending false or confusing reports when exchanging information with their nearby 
neighbors, leading to some authentic SUs making wrong decisions or even leading to fatal 
sensing errors in the whole CRN. Such SSDF attacks can be categorized into three models [18]. 
The first model is a selfish SSDF attack, in which a malicious user always reports a presence 
decision or a relatively high energy value so that its neighbors are cheated out of the deserved 
spectrum opportunity. By contrast, in the second model, an interference SSDF attack, the 
malicious user always sends an absence decision or relatively little data, with the intention of 
causing interference with PUs. In the third model, a confusing SSDF attack, a malicious user 
sends out decisions or data at random, which confuses its neighbors or other SUs.  

Admittedly, some intelligent malicious users might cooperate with each other to cheat the 
honest SUs more readily, and they might even adapt their own attack strategies to combat the 
authentic users’ various anti-attack schemes. However, these are beyond the scope of the 
present paper and will be discussed in our further research.  

3. Attack-Proof Cooperative Spectrum Sensing 

In this section, an attack-proof CSS scheme based on the consensus algorithm is proposed, 
followed by a discussion of its convergence and sensing performance. We then provide a brief 
introduction to two existing consensus-based schemes. These will be used for comparison in 
the next section. 

3.1 Proposed Scheme 

It is assumed that each SU can establish reliable duplex communication links with its 
neighbors according to the MAC protocol. Thus, the decentralized CRN can be modeled as an 
undirected graph  ,G V E , in which  1, 2,V N   is the set of all SUs and E is the set of 

active links [19]. The potential attackers are included in the N cooperative SUs, and they can 
launch SSDF attacks with any, or any combination, of the attack models mentioned in Section 
2.2.  

Let  ijaA  be the adjacent matrix of the graph. The edge set can then be represented 

as  { , , 0}ijE i j V V a    . Also, the neighbor set and the degree of the i-th SU are defined 

as  | 0i ijNe j V a    and | |i i ij
j

d Ne a   , respectively. The Laplacian of the graph is [19]: 

 ij N N
l


  L D A                                                     (3) 

where  1 2, , Ndiag d d dD  is the degree matrix of the network. Then,  the elements of L  can 

be represented as: 
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Based on the above assumptions, our proposed scheme can be represented with the 
following three steps: 

Step 1. Local spectrum sensing. In this step, each SU individually performs local spectrum 
sensing with an energy detector, and the normalized accumulated energy within the 
observation time lT  is recorded as its initial state (i.e.,  0i ix Y ).  

Step 2. Information exchange iteration. After synchronous local spectrum sensing, each SU 
tries to establish communication links with its nearby users. If the links are established 
successfully, all cooperative SUs will begin to exchange sensing states with their link 
neighbors. Because of the lack of any central authentication, malicious SUs could launch 
SSDF attacks secretly at any arbitrary moment by sending false or confusing reports to their 
neighboring users. Thus, in order to avoid the potential for wrong decisions, each authentic 
cooperating SU has to continually monitor the reports sent by its neighbors and reject 
misleading reports as soon as possible. 

Given the above analysis, we introduce some special anti-attack techniques at each 
authentic SU during the information exchange. The detailed procedure is listed as follows. 

1) For any authentic user [1, ]i N , initialize the iteration with the state  0ix , 0k  . 

2) At time instant k , update the SU’s neighbor set  iNe k  and degree ( )id k . Then, register 

each neighbor’s current report as:  ( )ij jR k x k  for  ij Ne k  , and get the average value for 

the neighborhood:  
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3) Find the neighbor with the maximum deviation from ( )iu k , that is: 

 
 0 arg max ( ) ( )

i
j i

j Ne k
j x k u k


                                               (6) 

and record that neighbor as a suspect selfish or interference attacker. 
4) Calculate the average for the neighborhood without the suspect, that is: 
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5) Let c be the predefined threshold for each user’s final decision in Step 3. If 

  '( ) ( ) 0
ii c cu k u k    , then, because of its abnormality, the suspect 0j is very likely an 

attacker of the first or second model. Thus, it should be excluded from the i-th SU’s 
neighborhood, that is: 

0( ) ( ) /i iNe k Ne k j                                                       (8) 

6) If 20k  and  mod ,10 0k  , then, for ( )ij Ne k  , calculate the standard deviations of its 

recent ten and the last ten reports to the i-th SU, respectively, and register them as: 

 ( 9), ( 8), , ( )ij ij ija std R k R k R k    ,                                        (9) 

 ( 19), ( 18), , ( 10)ij ij ijb std R k R k R k                                    (10) 

7) If a b  for some neighbor 1 ( )ij Ne k , then 1j will be excluded from the neighborhood as 
a potential confusing attacker: 
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1( ) ( ) /i iNe k Ne k j                                                    (11) 
8) Update each user’s state with the following rule [23]: 

         ( )
1

i
i ii i ij jj Ne k

x k W k x k W k x k


                              (12) 

where ( )ijW k  is Metropolis weight, defined by [23] as: 

   

  

1
,

1 max ( ), ( )

( ) 1 ,

0,
i

i
i j

ij inn Ne k

if j Ne k
d k d k

W k W k if i j

otherwise



  
  




                      (13) 

By this rule, the weight on each edge is one over one plus the larger degree at its two incident 
vertices, and the self-weights are chosen such that the sum of weights at each SU is 1. The 
corresponding vector form of the iteration rule can be represented as [23]: 

     1k k k X W X                                                   (14) 

where     ijk W kW  denotes the Metropolis weight matrix, and 

        1 2, , , Nk x k x k x kX   

is the state vector of all cooperating SUs.  
9) Update the discrete time instant: 1k k  . 
10) If ck T ( cT  can be simply interpreted as the maximum iteration times), then break the 

iteration; else, continue from 2). That is, once the iteration time exceeds the given constraint, 
the information exchange must stop, whether or not a common value has been reached.  

The motivation behind 6) and 7) in the above procedure can be explained as follows. 
According to the consensus notion [19][23], if the information exchange between the 
neighboring users is regularly carried out with the iteration rule (14), then, for any authentic 
neighbor ( )ij Ne k , its real state  jx k  will asymptotically converge to the average 

consensus [23] (also see (19) in subsection 3.2). As a result, the fluctuation of neighbor j ’s 
corresponding reports to the i-th SU will gradually decrease; thus, the standard deviation of the 
sequential piecewise reports assumes a non-increasing trend. For simplicity of implementation, 
every 10 reports are registered as one group; then, a b  for authentic neighbors. However, 
because of the randomness of its fabricated reports, this will not be the case should neighbor j  
be a confusing attacker who aims at deliberately disrupting cooperation. Therefore, we can use 
this characteristic to identify and reject the third type of attackers, at the cost of the extra 
memory required by each authentic SU to record the recent 20 reports from its neighbors. 

Step 3. Final decision. Following the conclusion of information exchange, each user 
individually makes the final decision by comparing its final state with c , that is: 

 1,

0,
i c

i

x k
D

otherwise


 


                                                     (15) 

3.2 Convergence Discussion 

Undoubtedly, when there are no attackers, a simplified iteration procedure with only rule (14) 
suffices for carrying out the required information exchange. Without considering any 
anti-attack strategies, the network can be simply viewed as a fixed, undirected graph. In this 
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case, the matrix  kW from (13) is time-invariant (i.e.,  k W W ), symmetric, and doubly 

stochastic, with the following properties[23]: 
T T1 W 1 , W1 1 ,  / 1T N  W 11                                 (16) 

where     denotes the spectral radius [23] of the given matrix and 1 is the unit vector. That is, 

all of its row and column sums are equal to one, and all of the eigenvalues are real and ranged 
in ( 1,1] . On the basis of (14), we define a k-step transition matrix as 

       -1 1 0k kΨ W W W , and then we have: 

     0k kX Ψ X                                                       (17) 

Further, as derived in [23], we can obtain 
 lim lim /k T

k k
k N

 
 Ψ W 11                                                    (18) 

or, equivalently, all cooperative SUs will reach an average consensus asymptotically [19][23] 

   *

1 1

1 1
0 , , [1, ]

N N

i i i
i i

x k x x Y as k for i N
N N 

                       (19) 

with the convergence speed precisely  /T N W 11  [23]. 

However, when several attackers are present, iteration with only rule (14) will lead to fatal 
sensing errors, since the average consensus will be disrupted. The whole network will move 
towards the false or random reports sent by attackers. In contrast, our proposed scheme applies 
some techniques to exclude potentially malicious users from the neighborhood of authentic 
SUs as soon as possible. This may result in unbalanced information exchange along certain 
edges of the initial graph. That is to say, although a potential attacker can still receive reports 
from neighboring authentic SUs, they may reject the attacker’s own reports. With our iteration 
procedure, the neighborhood of each authentic user must be determined according to what it is 
receiving currently and has received in the past. As a result, the proposed scheme is essentially 
associated with a sequence of directed sub-graphs     ,a a aG k V E k , in which aV  and  aE k  

denote the sets of authentic SUs and active edges, respectively. Enlightened by [24], we 
summarize the convergence of the proposed scheme with the following theorem. 

Theorem: For dynamic sub-graphs  aG k , if there exists an infinite sequence of uniformly 

bounded, non-overlapping time intervals [ , )n n T , which can make the graph union  

        1 , 1 , , 1n T
k n a a a aU G k G n G n G n T 
       strongly connected (or, equivalently, have a 

spanning tree), then a consensus can be asymptotically achieved through the proposed scheme.  
Proof: Let  1 2, ,a a asG G GaG   be the set of all possible directed sub-graphs  aG k  during 

the information exchange, and let  , ,a a1 a2 asW W W W  be the corresponding set of all 

possible weight matrices  kaW . Obviously, both aG  and aW have finite elements. 

Let the set       , 1 , , -1a a an n n T W W W  denote the weight matrices corresponding to 

the dynamic sub-graphs  aG k  at discrete times [ , )k n n T  . By the definition in(13), we 

know that  a kW  is a (row) stochastic matrix, with the diagonal entries  aiiW k  always being 

strictly positive [23]. Thus, the matrix product 
       1 -1 1n T

k n a a a ak n T n n 
   W W W W  
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is a stochastic matrix with positive diagonal entries[24]. Also, from(13),  a kW  is 

nonnegative, with all its entries 0aijW  . Then, as proved by [25], we can get:  

   11 n Tn T
k n a ak n

k k   
 

  W W                                        (20) 

where 0  can be specified from matrices  a kW  [25]. If the union  1n T
k n aU G k 
  has a 

spanning tree, then the directed graph corresponding to the matrix summation  1n T
ak n

k
 

 W  

also has a spanning tree, which in turn implies that the matrix product  1n T
k n a k 
 W  will also 

have a spanning tree [24].  
As represented in [23], all eigenvalues of  a kW  lie in the range of ( 1,1] , with 1 being a 

trivial eigenvalue. According to lemmas 3.5 and 3.7 in [24],  a kW  will be stochastic, 

indecomposable, and aperiodic (SIA). That is,  lim n T
n a k W 1ν , where ν  is some negative 

column vector satisfying  
a

T k W ν ν and 1T 1 ν  [24]. Further, with the help of lemma 3.2 in 

[24], we can derive that the matrix product  1n T
k n a k 
 W  is also SIA. Then, there exists some 

column vector y such that: 

 1lim 1n T T
k n a

T
k 


 W y                                                (21) 

Therefore, a consensus can be asymptotically achieved through the proposed scheme with 
very weak long-term connectivity of the graph union required. 

Intuitively, if the collection of authentic sub-graphs associated with the proposed scheme is 
strongly connected during information exchange, a consensus can be guaranteed at all 
authentic SUs. Essentially, such connectivity means that any two authentic SUs can directly or 
indirectly exchange their sensing results for sufficiently long duration [18]. Of course, in 
practice, even if the consensus-based scheme can reliably exclude attackers as soon as possible, 
some authentic users will inevitably be partially impacted by the malicious reports. In very 
rare cases, some might even be excluded as attackers by mistake due to the limitations of the 
anti-attack techniques. In addition, because of the sensing-time constraints, the iteration might 
be compelled to stop before reaching any acceptable consensus, which may also lead to a 
wrong decision at some SUs. However, allowing for these few exceptions, the proposed 
scheme generally still ensures that most authentic SUs converge to some common state with 
tolerable differences between them. 

3.3 Sensing Performance Analysis 

Because of the randomness of attacker’s partial negative effects, it is very difficult to represent 
theoretically the exact cooperative sensing performance of the proposed scheme with closed 
forms. However, it can be approximated numerically by the average performance of all 
authentic SUs (see the simulation results in subsection 4.3). 

It is obvious that the earlier real attackers are excluded, the less destruction authentic users 
will confront, thereby obtaining better sensing performance. Ideally, if the iteration time is 
sufficient, and if partial negative effects can be ignored, a common value will be reached as the 
final decision statistic by all authentic SUs: 

 *
0

1 1 1
0

a a
j jj V j V

a a a

x x Y Y
N N N 

                                        (22) 
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where aN is the number of authentic SUs and 0
a

jj V
Y Y


   can be understood as the equal 

gain combination (EGC) test statistic of all authentic SUs [4]. It has been derived that the sum 
of aN independent chi-square random variables is another chi-square variate [26], so, from 
(2): 

 
2
2 0

0 2
2 1

,
~

2 ,

a

a
a a

mN

jj V
mN jj V

H
Y Y

m H



 



 





                                    (23) 

Thus, over an AWGN channel, the collective probabilities of false alarm and detection can 
be derived as [5]: 

   *
0 0| | 1 ,

2a

a c
f c j a c aj V

N
Q P x H P Y N H mN


 



       
 

 ,              (24) 

     *
1 1| | 2 , ,

a a
d c j a c j a c aj V j V

Q P x H P Y N H Q m N mN   
 

         (25) 

where ( , , )Q    and ( , )   denote the Marcum Q-function and the incomplete gamma function, 
respectively, with the definitions used in Matlab2009b [27]: 

 
2 2

11
( , , ) exp

2

m

mmb

x x a
Q a b m I ax dx

a




 
   

 
 ,                           (26) 

1

0

1
( , )

( )

x t ax a e t dt
a

  
  ,                                                (27) 

and ( )a  is the gamma function 1

0
( ) t aa e t dt

     . 

Further, over fading channels, the corresponding average probability of detection is 
obtained by integrating (25) over the distribution of 0

a
jj V

 


  , that is: 

   
00

ddQ Q x f x dx
                                                  (28) 

where  
0

f x  is the PDF of 0 .  

However, in practice, considering the unavoidable partial negative impacts from attackers 
and the sensing-time constraints, the variable matrix  kW  is, in general, not doubly 

stochastic. Thus, the final tolerable consensus of all authentic SUs is expected to deviate from 
the average value of their initial states to some extent. Moreover, in rare cases, some authentic 
users even might be mistaken as attackers, which will directly deteriorate the collective 
performance. Therefore, the expressions in (24)-(28) can only be regarded as the upper bounds 
for the proposed scheme’s sensing performance in ideal cases. 

3.4 Other Consensus-Based Schemes 

Before continuing the simulation, we will introduce two existing consensus-based schemes, 
which we term for short the Basic scheme [12] and Yu scheme [18]. 

Basic scheme: This is the prototype of all consensus-based CSS schemes. All cooperative 
SUs are assumed to report honestly, and each updates the state only by the following iteration 
rule, without any anti-attack consideration [12]: 

         1
i

i i ij j ij Ne k
x k x k a x k x k


                              (29) 

where   is the step size ranged in 0 1/   , with being the maximum degree of the graph.  
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Yu scheme: In this scheme, each authentic user directly excludes the link neighbor whose 
current report has the most deviation from the last mean value of the neighborhood and then 
iterates with the same rule as (29) [18]. 

Similarly, [19] has verified that rule (29) can guarantee a consensus by all cooperating users 
with an exponential rate of convergence. It is obvious that the Basic scheme can hardly counter 
any SSDF attacks. Although some initial attempts have been made in the Yu scheme [18], its 
effectiveness in countering these attacks is very limited, even sometimes resulting in 
unintentional fatal consequences, as we will show by simulation in Section 4. What should be 
especially noted is that, in practical implementation, it is difficult for each SU in both of these 
schemes to obtain prior knowledge of the network’s maximum degree. Thus, we use an 
alternative rule based on Metropolis weights [23] as given in (14), by which each SU only 
needs to know the degrees of its neighbors to determine its next state. Besides that, the existing 
schemes never touch the sensing-time constraints, a problem that is addressed properly in the 
proposed scheme. Even if the time duration for local sensing or information exchange is 
insufficient, each authentic user can still obtain a final decision individually, though the 
collective sensing performance of the whole CRN might deteriorate to some extent. To 
minimize this deterioration, a novel MAC-layer sensing mechanism should be designed to 
optimize the sensing time before this scheme is implemented, though designing such a 
mechanism is outside the scope of this paper. 

4. Simulation Results and Discussion 

To evaluate its performance, this section will compare the proposed scheme with the two 
pre-existing schemes above. The simulations will concern the aspects of convergence and 
sensing performance. 

4.1 Simulation Setup  

We study a decentralized CRN, where the sensing channels of all SUs are modeled as 
quasi-static, flat, Suzuki fading channels [28] without any spatial correlation. Thus, the 
channel gains only vary from sensing period to sensing period, and the instantaneous SNR of 
any SU can be represented statistically as [28]: 

dB dB dBdB Shadow Fading                                           (30) 
where the three terms in dB on the right denote the mean SNR, the shadowing (also called 
large-scale fading) effects, and the small-scale fading effects, respectively. In our simulations, 
the relative distances between any two SUs are assumed to be much smaller than their 
distances to the PU; thus, all SUs experience I.I.D channel effects, with the same 5dBdB  . 
Further, the shadowing effects are assumed to be log-normally distributed with the 
power-spread factor set as 8dBdB  , and small-scale fading is modeled as Rayleigh fading for 
simplicity.  

For each SU, energy detection is performed individually with the same time-bandwidth 
product 5m  , and we directly produce the output energy of each SU according to (2). The 
maximum number of iterations for local-information exchange in the second step is set to be 
200, and the tolerance between the final states of any two SUs is set to be less than 0.1dB if 
consensus has been reached. For the simulations of the Basic and Yu schemes, all SUs are 
assumed to know the maximum degree of the network, and the step size is set to 0.99 /   . 

4.2 Convergence Simulation   
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In the first part of our simulations, we consider two example topologies of CRNs to investigate 
the convergence of these three consensus-based schemes under different SSDF attacks. As 
shown in Fig. 3 (a) and (b), both are modeled as connected graphs  ,G V E . For simplicity, 

we assume that 0 /1ija   and that all edges have the same weight. The topology in Fig. 3-(a) 

denotes a CRN composed of 11 SUs and 18 links, while that in Fig. 3-(b) corresponds to a 
CRN with 50 SUs and 120 links. Four different scenarios are discussed: no attacker, one 
attacker, two attackers, and more than two attackers. For each scenario, 100,000 trials have 
been performed, and the threshold for making the final decision was set to 13.4c  . Three 
indicators are defined to evaluate these three schemes. The failure ratio (FR) is the percentage 
of the cases in all trials in which more than 10% authentic SUs deviated from any one of the 
others by more than 0.1dB difference. This is used for assessing the extent of convergence 
failure. The time ratio (TR) is defined as the average proportion of the given iteration times 
that were required for more than 90% of authentic SUs to reach a tolerant consensus. Thus, TR 
well reflects the convergence speed. The third measurement is the attack-proof ratio (APR). It 
corresponds to the average percentage of the cases in all trials in which more than 90% of 
authentic SUs still made the right decisions when some attackers were present. 
 

           
(a) 11 SUs and 18 links                                              (b) 50 SUs and 120 links 

Fig. 3. Two examples of the CRN topology 
 

Table 1. Convergence comparison in the first topology when there are no attackers 

Sche
mes 

Topology 1 Topology 2 
FR 

(%) 
TR 

(%) 
FR 

(%) 
TR 

(%) 
Basic 0 12.5 0 34.3 
Yu 3.7 5.9 51.9 26.0 

Proposed 2.1 10.5 7.4 36.2 
 

We start with the simplest scenario, the one in which there are no attackers. As shown in the 
left part of Table 1, by 100,000 trials in the first topology, the Basic scheme can always 
guarantee an average consensus of the initial states, while both of the other schemes have some 
probability of convergence failure. In terms of convergence speed, the Yu scheme performs 
best, with only 11 iterations required on average before a tolerable consensus can be reached. 
The Basic and the proposed schemes need about 25 and 21 iteration times to reach consensus, 
respectively, or 12.5% and 10.5% of the given 200 iteration times. This is mainly because the 
Yu scheme directly excludes the neighbor with the maximum average deviation in any 
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iteration, rapidly reducing the number of authentic links. For a random trial, Fig. 4 (a), (b) and 
(c) depict the states of all 11 SUs in the first topology during the iteration process under 0H in 
each of these three schemes, respectively. Similar results were obtained in the second topology. 
From the right part of Table 1, we can observe that all three schemes in the second topology 
required more iteration times to reach an acceptable consensus, and the failure ratio grew 
quickly in both the Yu scheme and the proposed scheme, since the probability that a single 
user will be mistaken as an attacker rises with the increasing scale of the network. 
 

           
(a) Basic scheme                                                        (b) Yu scheme 

 
(c) The proposed scheme 

Fig. 4. Iteration process of all 11 SUs under 0H  by different consensus-based schemes when there are 

no any attackers in the CRN with the first topology 
 

In the second scenario, one malicious user is assumed to be present in the CRN. Taking the 
first topology as an example, suppose the 11th SU is a malicious user who can launch SSDF 
attacks using the three models mentioned in Section 2. For a selfish attack, the 11th SU always 
reports ‘80’ under 0H . Meanwhile, for an interference attack, it reports the invariable state ‘1’ 

under 1H , and for a confusing attack, it sends a random report between [0, 10m] under 0H . All 
three attacks in this scenario are assumed to begin from the 8th iteration. Table 2 lists the 
comparison between the three schemes in terms of the three indicators under different SSDF 
attack models, where time-ratio measurements greater than 100 % indicate that no tolerable 
convergence could be reached in any trial. It is clear that the proposed scheme can protect 
authentic users from all three types of SSDF attack, guaranteeing a consensus in most cases, 
while the other two schemes are very likely to confront fatal errors. In particular, under a 
confusing attack, both the Basic and Yu schemes hardly even converge over a very long time; 
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both have poor robustness against this model of attack. Such results are not surprising. The 
Basic scheme takes no consideration of sensing security, and the Yu scheme frequently fails to 
reject the real malicious user since the attacker-exclusion rule is too rough. This results in the 
whole network moving towards the false or confusing states generated by the attacker. To 
exemplify the proposed scheme’s capability for excluding SSDF attacks, Fig. 5 depicts the 
iteration process of all 11 SUs in a random trial of each of these three schemes when the 11th 
SU launches an interference attack.  
 

Table 2. Convergence comparison in the first topology when there is one attacker 

Schemes 
Selfish attack Interference attack Confusing attack 

FR 
(%) 

TR 
(%) 

APR
(%)

FR
(%)

TR
(%)

APR
(%)

FR
(%)

TR 
(%) 

APR 
(%) 

Basic 0 41.5 0 0 85.5 0 100 100+ 0 
Yu 4.5 27.0 2.5 3.8 61.0 1.1 100 100+ 0.5 

Propo
sed 

2.5 12.5 80.2 2.7 23.5 78.7 2.1 11.5 81.8 

 

           
(a) Basic scheme                                                        (b) Yu scheme 

 
(c) The proposed scheme 

Fig. 5. Iteration process of all 11 SUs under 1H  by different consensus-based schemes when there is one 

interference attacker in the CRN with the first topology 
 

In the third scenario, we consider the case of two attackers. Within the first topology, the 5th 
and 11th SUs are assumed to launch SSDF attacks beginning with the 10th and 20th iterations, 
respectively. Table 3 compares the indicators for each of the three schemes under different 
combinations of attack models used by these two malicious users. The condition ‘2 Selfish’ 
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means that users 5 and 11 always send ‘80’ and ‘120’ when attacking, respectively. ‘2 
Interference’ represents the case that they always report ‘1’ and ‘3’, respectively, while 
‘Selfish and Confusing’ denotes a combined attack in which user 5 always sends ‘80’ and user 
11 sends random reports ranged in [0,10m]. From this table, the Basic and Yu schemes are 
proven to be more vulnerable than they are in the one-attacker scenario, while the proposed 
scheme has almost the same, powerful resistance to attack.  

 
Table 3. Convergence comparison in the first topology when there are two attackers 

Schemes 
2 Selfish 2 Interference Selfish & Confusing 

FR 
(%) 

TR 
(%) 

APR
(%)

FR
(%)

TR
(%)

APR
(%)

FR
(%)

TR 
(%) 

APR 
(%) 

Basic 100 100+ 0 100 100+ 0 100 100+ 0 
Yu 100 100+ 0.5 100 100+ 0.1 100 100+ 0.1 

Proposed 2.8 9.0 81.6 5.7 20.1 76.5 2.4 15.1 82.5 
 
Table 4. Convergence comparison in the second topology when there are more than two attackers 

Sche
mes 

FR 
(%) 

TR 
(%) 

APR 
(%) 

Basic 100 100+ 0 
Yu 100 100+ 0 

Proposed 11.1 38.0 77.2 
 

           
(a) Basic scheme                                                        (b) Yu scheme 

 
(c) The proposed scheme 

Fig. 6. Iteration process of all 50 SUs under 0H by different consensus-based schemes when there are 

more than two attackers in the CRN with the second topology 
We have also done some simulations with more than two attackers in the second topology, 
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in which the users with the numbers 2, 10, 22, and 35 launch selfish attacks beginning with the 
10th, 20th, 30th and 40th iterations and with invariable malicious reports ‘80’, ‘120’, ‘80’, and 
‘120’, respectively. In addition, user 50 begins its confusing attack from the 50th iteration, with 
a random report in the range [0, 10m]. Similarly, from Table 4 and Fig. 6, we can observe that 
the proposed scheme can successfully exclude these attacks, too, from the network in most 
cases, while the other two schemes always fail to counter them. 

4.3 Sensing-Performance Simulation 

For the second part, we further studied the sensing performance of the proposed scheme. The 
scenarios of no attacker, one attacker, and two attackers were considered. In each scenario, 
100,000 trials were performed in random topologies with 11 SUs and 18 links, each topology 
similar to that shown in Fig. 3-(a). 

Fig. 7 plots the curves of the complementary receiver operating characteristics (CROC) for 
the three consensus-based schemes when there are no attackers. The numerical result under 
perfect conditions calculated from (24) and (28) is also shown, which indeed provides a 
theoretical upper bound for these three schemes. Of note is that the performance of the Basic 
scheme is pretty close to the theoretical upper bound, since this scheme can always guarantee 
an average consensus for the initial states. The deviation of the other two schemes from the 
upper bound is mainly caused by the constraints of the anti-attack strategies. Both trade some 
performance for robustness against potential SSDF attacks. In addition, the CROC curves of 
the three typical, centralized-fusion schemes based on the OR [5][21], MAJOR [21], and AND 
rules [21] are plotted in this figure. Obviously, without any attackers, the proposed and the 
OR-rule-based schemes have similar sensing performance, and they both outperform all others 
except the Basic scheme. 
 

 
Fig. 7. CROC curves of three consensus-based schemes and three centralized fusion schemes based on 

typical K out of N fusion rule when there are no any attackers 
 
If there are several attackers in the CRN, some of the above six schemes will confront fatal 

sensing errors. We thus use the total error rate (i.e., f mQ Q ) instead of the CROC curve to 

evaluate their robustness against SSDF attacks. In each trial, all malicious users are supposed 
to launch their attacks at a random iteration time ranged in [1, 50]. Fig. 8 depicts the average 
error rates for all six schemes given different detection thresholds in 100,000 trials for which 
there is one attacker, with the subplots (a), (b), and (c) corresponding to the three different 
attack models. As indicated by this figure, among these schemes, only the proposed and the 
MAJOR-rule-based schemes can generally effectively defend CSS against all three attack 
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models, while both the Basic and the Yu schemes are very vulnerable to any model of attack. It 
can be further observed that the OR-rule-based scheme is particularly sensitive to selfish 
attack, and the AND-rule-based scheme will be invalidated by interference attack.  

 

                
         (a) one selfish attacker                                            (b) one interference attacker 

 
(c) one confusing attacker 

Fig. 8. The average error rates of all six schemes for different detection thresholds when there is one 
attacker 

 
Similarly, corresponding results in the cases in which there are two selfish attackers, two 

interference attackers, or two confusing attackers are shown in Fig. 9 (a), (b), and (c), 
respectively. Compared with the results in Fig. 8, as the number of malicious users increases, 
the robustness of the proposed scheme changes unremarkably in all three cases. The Basic 
scheme still has no resistance to attack, while the robustness of the other schemes may 
obviously deteriorate in certain cases. Furthermore, the sensing error rates of these schemes 
under different combined attacks are investigated. As expected, in all cases, the proposed and 
the MAJOR-rule-based schemes remain the best choices for defending the authentic SUs 
against attacks. With the Basic or Yu schemes, the whole network will face severe disruption. 
In particular, the OR-rule-based scheme is bound to end with sensing errors in the case of a 
‘Selfish and Confusing’ attack, while the AND-rule-based scheme is invalidated by an 
‘Interference and Confusing’ attack. 
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        (a) two selfish attackers                                       (b) two interference attackers 

 
(c) two confusing attackers 

Fig. 9. The average error rates of all six schemes for different detection thresholds when there are two 
attackers 

5. Conclusions and Future Work 

In this paper, we have presented a secure, consensus-based CSS scheme to counter SSDF 
attacks in decentralized CRNs. Utilizing the notion of bio-inspired consensus, each 
cooperating user can individually make a final decision based solely on the local exchange of 
information within its neighborhood, rather than using any centralized control or fusion. To 
defend authentic users against three potential models of SSDF attack, we have introduced 
some attacker-exclusion techniques in the proposed scheme to proactively identify and reject 
any false or confusing reports given by malicious users during information exchange. 
Considering the practical implementation, we have replaced the traditional consensus iteration 
rule with another strategy based on Metropolis weights, so that each user no longer requires 
any prior knowledge of the whole network. Extensive simulation results have shown that the 
proposed scheme outperforms several existing solutions in terms of robustness against 
different SSDF attacks. 

Some interesting issues on this topic for further research include MAC-layer sensing 
mechanisms, detailed protocols for information exchange, and more robust schemes for 
countering SSDF attacks when link failure occasionally occurs in the network because of 
mobility, fading, or power constraints. 
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